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Abstract

We demonstrate that it is possible to extract semantically meaningful fixed length representations

of stochastically sampled time series data. We use a novel neural network architecture (SimCLR

with a gated recurrent neural network backbone) to go about this.



Chapter 1

Introduction

The extremely large surveys typifying astronomy’s Big Data Era will be impossible to parse

manually (Minniti et al., 2010; Ivezić et al., 2019; Dewdney et al., 2009). If we are to consis-

tently interrogate this data deluge at scale we need to devise reliable and robust automated meth-

ods. Deep learning has already gained a foothold in many data intensive fields, from astronomy,

to particle physics, to chemistry. Deep learning is therefore a natural solution to astronomy’s

inherent scaling problem.

While supervised deep learning has been applied again (Storrie-Lombardi et al., 1992), again (Belokurov

et al., 2003), and again (Charnock and Moss, 2017) in the quest to classify astronomical objects,

its uses are limited by the availability of high quality labelled data. If there is no reliably labelled

dataset one must turn to unsupervised or self-supervised methods to sort known categories of

objects, and also to the find the ‘unknown unknowns’—objects so obscure that they defy classi-

fication.

Self-supervised representation learning has recently exploded in popularity, with a slew of mod-

els being developed in rapid succession (i.e. Chen et al., 2020; Chen et al., 2020a; Grill et al.,

2020; He et al., 2019; Chen et al., 2020b). At its core, representation learning attempts to pro-

duce semantically meaningful compressed representations (or embeddings) of complex highly

dimensional data. Aside from simply being a compression device, these embeddings can also

be taken and used in downstream tasks, like clustering, anomaly detection, or classification.

In recent years, pioneering work has applied self-supervised contrastive learning models to

galaxy image clustering. Abul-Hayat et al. (2020) trained a simple framework for contrastive

learning representations,(SimCLR; Chen et al., 2020) on multi-band galaxy photometry from

the Sloan Digital Sky Survey,(SDSS; York et al., 2000). They demonstrated that the resulting

embeddings capture useful information by using them directly in a training set for a galaxy

morphology classification model and a redshift estimation model. Similarly, Sarmiento et al.
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(2021) trained a SimCLR model on integral field spectroscopy data from galaxies in the Map-

ping Nearby Galaxies at Apache Point Observatory survey (MaNGA; Bundy et al., 2015). They

also found that SimCLR produces semantically meaningful embeddings. With these recent suc-

cesses in mind, we ask: can we also use contrastive learning to interrogate astronomical time

series data? In this work we address this question and leverage self supervised contrastive learn-

ing to explore the VISTA Variables in the Vı́a Láctea survey (VVV; Minniti et al., 2010).

In a concurrent work Donoso-Oliva et al. (2022) approach the problem of time series repre-

sentation learning from a natural language processing (NLP) perspective. They repurpose the

BERT (Bidirectional Encoder Representations from Transformers) Transformer network, which

was initially developed in the context of NLP (Vaswani et al., 2017; Devlin et al., 2019). They

then perform a ‘pretraining’ task on light curves, using the network to fill in zeroed datapoints

within the time series. Once this pretraining task is completed, semantically meaningful em-

beddings can be extracted from the transformer network. Donoso-Oliva et al. (2022) show that

these embeddings are useful for the downstream task of classification.



Chapter 2

Contrastive self-supervised learning

Figure 2.1 describes a simple contrastive learning model in the vein of SimCLR (Chen et al.,

2020) (this will be referred to as ‘contrastive curves’ throughout). This model takes as input

a sample (x) from the training set, and augments it to produce A (x). This augmentation is

performed in such a way that A (x) shares enough semantically meaningful data with x to belong

to the same class of objects. In the contrastive learning literature (x,A (x)) is known as a positive

pair. This positive pair is then passed to a Siamese neural network Φ, which projects the high

dimensional input data onto a lower dimensional latent space. All other training set samples are

assumed to belong to a different class to x, and so can be combined with x to produce ‘negative

pairs’.

We use the normalised temperature cross entropy (NT-Xent) loss as our contrastive loss. The

NT-Xent loss was first introduced in Sohn (2016), and was subsequently popularised by Chen

et al. (2020). The NT-Xent loss is defined as

L (zi,z j) =− log
(

exp(zT
i z j/T )

∑
2N
k=1(1−δki)exp(zT

i zk/T )

)
, (2.1)

where zi and z j are a positive pair, and zi and zk are a negative pair. All embeddings are nor-

malised. T is a ‘temperature’ hyperparameter introduced in Chen et al. (2020) to help the model

learn from hard negatives. δ is the Kronecker delta.

As shown in figure 2.1b, minimising the NT-Xent loss minimises the distance in the embedding

space between positive pairs while simultaneously maximising the distance between negative

pairs. Therefore, once training is completed we expect to have moulded a semantically mean-

ingful embedding space with similar vectors clustered close together.

In figure 2.2, we show a representation of our chosen model: a stacked bidirectional gated

recurrent unit (GRU),(Cho et al., 2014). Due to the variable lengths of our input time series, we

use a recurrent neural network. By taking the hidden states of our neural network, we convert the
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(B) The NT-Xent loss incentivises attraction in the latent space between similar examples while simulta-
neously incentivising repulsion between dissimilar examples.

FIGURE 2.1: In figure 2.1a a simple contrastive learning model is applied to time-series data.
A is an augmentation pipeline. A could consist of noise addition, stochastic temporal shifting,
and random data deletion. Φ is a function approximator that projects inputs onto an embedding
space. Φ is typically a neural network; when processing time-series data Φ could be a recurrent
neural network (RNN; McCulloch and Pitts, 1943). The loss L measures the distance between
the embeddings Φ(x) = zi and Φ(A (x)) = z j, and we train by attempting to minimise this

distance while maximising the distance between dissimilar samples (figure 2.1b).
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variably lengthed light curves to a fixed-length representation. Once we have this fixed-length

representation, we can follow Chen et al. (2020) and use a single hidden layer fully connected

neural network (i.e., z = g(h) = W2,ReLU(W1h)) to project the representation onto a final 64-

dimensional space. We train on the vectors in this final space.

Our model is written in PyTorch (Paszke et al., 2019) and is available under the GNU Affero

General Public License v3.0 at https://github.com/nialljmiller/contrastive-curves.

In Deb and Singh (2009) a different method is used to create representations of light curves

without any priors. Their work presents a methodology for analysing light curves of variable

stars, with both Fourier decomposition and PCA as principal analytical tools. This methodol-

ogy is particularly designed to address the challenges posed by the non-uniform sampling of

light curves, which is a common issue in observational astronomy. The authors implement a

preprocessing step that involves phase-folding the light curves based on the stars’ periods, then

interpolating the magnitudes to achieve uniform sampling across the phase from 0 to 1 in steps

of 0.01. This process ensures that each light curve is represented by a uniformly spaced set of

points, making the data compatible with Fourier decomposition, which requires uniform sam-

pling. For the Fourier decomposition analysis, the method transforms the light curves into a sum

of cosine and sine series, thus allowing for the characterisation of the light curve through the

Fourier parameters. This method has limitations however, Fourier analysis is fundamentally a

fitting technique. While we can increase the Fourier terms to ultimately approximate any shape

of light curve, this technique is computationally expensive and difficult to tune (BAART, 1982).

PCA is employed as a more scaleable solution for analysing and classifying variable stars within

large datasets. By directly using the interpolated light curve magnitudes as input, PCA bypasses

the need for pre-computing Fourier coefficients, offering a significant advantage in terms of

computational efficiency. The PCA transforms the original dataset into a new set of uncorre-

lated variables (principal components), which represent the most significant patterns within the

data. However, the PCA method relies on linear assumptions about the data it analyses, which

might not always be suitable for variable star light curves where non-linear phenomena gov-

ern brightness variations. Contrastive curves utilises data augmentation techniques to create

positive pairs from the original data. This approach is particularly adept at capturing nuanced

similarities between light curves that PCA might overlook due to its linear transformation and

variance-focused dimensionality reduction. In contrast, contrastive curves, especially when im-

plemented with neural networks such as bi-directional gated recurrent units (GRUs), can capture

complex non-linear relationships within the data. This capability allows for a more nuanced un-

derstanding of the underlying astrophysical processes reflected in the light curves. Contrastive

curves aims to create a semantically meaningful embedding space where similar examples are

clustered together while dissimilar examples are repelled from each other. This approach can

be particularly advantageous for classifying variable stars into their correct classes based on the

intrinsic properties of their light curves. PCA, on the other hand, might not yield an embedding

https://github.com/nialljmiller/contrastive-curves
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FIGURE 2.2: A variable star is input into our model. The star’s time series is denoted xt . The
time series is first passed into a bidirectional GRU network with an initial hidden state denoted
h0 and a final hidden state denoted hT . The initial and final hidden states are concatenated
along the channel axis, and the resulting vector h is passed through a linear projector. The
output vector z is used for training (Eqn. 2.1). At inference time we follow Chen et al. (2020)

and take h as the representation.
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space that is as intuitively interpretable in terms of semantic similarity, as it primarily focuses

on variance maximization.

To train our contrastive curves model, we generate slightly altered versions of each light curve.

These alterations, or augmentations, include adding noise, randomly shifting time points, and

cropping sections. These augmentations are chosen to represent changes to a light curve that

we could see between light curves of identical classes of variable stars. The purpose of these

augmentations is to teach the model to recognise the essential features of the light curves despite

these changes. Each original light curve and its augmented version form a positive pair, meaning

they should be recognized as similar by the neural network. Conversely, each original light

curve paired with different light curves forms negative pairs, which the model should recognise

as dissimilar. The GRU, which comprises the majority of the network architecture, processes

the input light curves and transforms them into fixed-length vectors, or embeddings. These

embeddings are lower-dimensional representations that capture the significant features of the

light curves.

The NT-Xent loss function helps the network learn by making sure that the embeddings of posi-

tive pairs are close together, while the embeddings of negative pairs are far apart. After training,

the model can take any new light curve and convert it into an embedding. These embeddings

can then be used for various analysis tasks, such as clustering similar stars, classifying different

types of variable stars, or detecting anomalies. The contrastive curves method brings several

advantages to the field of astronomy; it can efficiently handle the massive datasets generated by

modern astronomical surveys, it is designed to be resilient to noise and irregular sampling (given

the appropriate design of augmentations), and the embeddings produced can be used for a wide

range of downstream tasks.

2.1 Data sample, preparation, and training

The light curves were taken from VVV light curves in the PRIMVS catalogue (Miller et al in

prep). PRIMVS contains ≈ 5 million periodic variable stars with low false alarm probability.

Due to the unique nature of the VVV survey, cross matching with pre-existing periodic variable

catalogues was limited. Each light curve’s period was calculated via phase folding and Fourier

based techniques with a false alarm probability assigned from a machine learning technique.

This allows for multiple periods to be calculated via fundamentally different methods and the

period with the lowest false alarm probability to be used. This is performed in an attempt to

remove any selection bias for periodic variable stars with previously unknown phase folded

structures such as the difference between AGB and EB, even though these are known.
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For each input light curve a phase was calculated from the best period. A time resolution of

0.25 days was used such that any datapoints within this distance to each other were combined

and their photometric error reduced as a function of 1/
√

N. This is required to minimise the

longest light curve length within a batch; if we have a single very long light curve within a

batch, the neural network will pad every curve within the batch to the length of the longest light

curve. In extreme cases this requires more VRAM than is available on the GPU machine and

halts training. After this reprocessing, the number of datapoints per light curve varies between

40 and 2000, with a median of ∼ 150. Further cuts were used to ensure each light curve only

contained reliable data-points that exclusively feature the photometry of the target star. This

involved selecting for both photometric and astrometric error. A selection of the following was

used:

• merror < 0.5

• merror < 3× ¯merror

• ‘ast res chisq’ < 100

• ‘chi’ < 10

• ‘ambi-match’ = 0

Where ‘ast res chisq’, ‘chi’, and ‘ambi-match’ are astrometric values taken from the DoPHOT

point spread function (PSF) fitting code. ‘ast res chisq’ and ‘chi’ characterise the goodness of

fit for the PSF. ‘ambi-match‘ is a boolean flag which signifies if the source appears blended with

a neighbour.

We normalise our magnitudes as

x̄m = 2
(

xm −A
B−A

)
−1 (2.2)

where apparent magnitude is denoted xm. A is set as the 90% completeness limit of the VVV

survey (16.8 mag), and B is set as the VVV survey’s saturation point (12 mag). This scaling

ensures that all magnitudes are roughly scaled between -1 and 1. Since the light curves are

already phase folded, we can pair our magnitudes with their phases. All the phases are originally

scaled between 0 and 1. Since the phase is cyclical, we embed it as a two channel vector

φ̄ = (sin(τφ),cos(τφ)). (2.3)

The final light curves as seen by the model have three channels: magnitude and the two channels

of encoded phase. We select the following augmentations for our model:
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• We want the learnt features to be invariant to the telescope’s sampling schedules. To this

end we apply a random datapoint deletion of our incoming sequences as an augmentor. In

practice we apply dropout (Srivastava et al., 2014) at a 10% rate on our sequences.

• We also do not want the representations to be dependent on the light curve length, and so

we also always apply a random crop along the time axis.

• To enforce phase invariance in the light curves we apply a randomised phaseshift on the

phase folded light curves. In practice we sample a phase from α ∼ U (0,τ), and ro-

tate the phase channels via the trigonometric identities sin(τφ +α) = sin(τφ)cosα +

cos(τφ)sinα , and cos(τφ +α) = cos(τφ)cosα − sin(τφ)sinα .

• The data is affected by instrumental noise. As we do not want the model to use this

information in its representations, we apply a random noise addition in our augmentation

pipeline. This noise is sampled from N (0,λ∆m), where ∆m is the median magnitude

error of the time series. λ is a hyperparameter. We set λ to 1 to take into account error

sources that are not represented in ∆m.

• We apply an amplitude jitter to the magnitude channel. This is of the form of a random

resample within a flat distribution between 1-1.05 of the amplitude. Without prior clas-

sification of the light curves we cant know the expected amplitude range for the source.

Instead, we use a conservative amplitude jitter as being a reasonable alternative.

We always apply random phase shift and random cropping. All other augmentations are applied

at a 50% rate.

The fina1 model is trained for 50000 iteration steps on a single NVIDIA Tesla V100. Training

completes in a wall time of roughly 18.5 hours.

2.2 Tuning

Due to the novelty of this method it is not trivial to decide on input parameter values for the

architecture and training of this network. Table 2.1 shows the hyperparameters used and their

justification. As it can take on the order of days to fully train the model, two separate grid

searches1 were performed to determine all of the hyperparameters.

The grid search method used for this network was not as simple as deciding the iteration which

produced the lowest loss and highest accuracy. This is because self supervised learning does not

provide a loss or accuracy measure which can be used to directly determine the effectiveness of

1Training the network multiple times with an array of different hyperparameters
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FIGURE 2.3: A PCA representation of the latent space trained with; learning rate = 0.001,
tau = 0.05 and gamma = 0.7.

the neural network. The NT-Xent loss is used to construct a semantically meaningful embedding

space, to determine the effectiveness of the network we must visually inspect the embedding

space. Our metric for determining the ‘best’ latent space representation was to inspect the

structure of both the UMAP (McInnes et al., 2018) and PCA (F.R.S., 1901) projections. We also

inspect the relationship between these projections and features from the PRIMVS catalogue.

Figures 2.3 -2.4 show the variety of projections we receive with relatively minimal changes to the

input parameters. Each subplot is colour coded with the normalised values from the PRIMVS

catalogue, these are (from top left to bottom right): Average magnitude, Average magnitude

error, M (Cody et al., 2014), Median Absolute Deviation, Stetson-k index (Stetson, 1996), Lag-1

autocorrelation, Amplitude, Anderson Darling (Anderson and Darling, 1952) and Skew.

The observed sensitivity in latent space with respect to the selected hyperparameters means it

is likely we have not selected the most optimal values. However, the values we have selected
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FIGURE 2.4: A PCA representation of the latent space trained with; learning rate = 0.01,
tau = 0.05 and gamma = 0.9

TABLE 2.1: Tuning parameters and their justifications

Hyperparameter Value Justification
Batch Size 4096 GPU memory limited
Drop out rate 10% Grid search #1
Hidden Dimensions 64 Grid search #1
Learning rate 0.0001 Grid search #2
Tau 0.05 Grid search #2
Gamma 0.7 Grid search #2
Output Dimensions 64 Final tuning

produce a semantically meaningful latent space projection and further tuning will require a more

intelligent approach.

The first grid search ”Grid search # 1” was used to determine parameters that do not specifically

pertain to the training loop - drop out rate and the number of hidden dimensions. The drop out

rate determines the probability of any point in a light curve being removed. This has proven to
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FIGURE 2.5: A PCA representation of the latent space trained with; learning rate = 0.001,
tau = 0.01 and gamma = 0.7

be an effective technique for destroying highly correlated relationships between neurons(Hinton

et al., 2012). The hidden dimensions (amount of neural layers between input and output) were

chosen as the smallest power of 2 which did not visually impact latent space clustering.

During the first grid search values of Learning rate = 0.01, Tau = 0.5 and Gamma = 0.9 were

used. The second grid search ‘Grid Search #2’ was used to determine the hyperparameters used

for the training loop. Where ‘Tau’ is the ‘temperature parameter’ from the NT-Xent loss, it is

analogous to the learning rate with a larger value amplifying gradients through the network.

‘Gamma’ determines the rate at which the learning rate decays during training. The number of

output dimensions was determined as the final parameter. This value was iteratively halved from

256 until the PCA and UMAP representations of both hidden states (h) and latent representations

(z) noticeably declined in complexity. Interestingly, this appeared to be 64 dimensions, the same

as the hidden dimensions.



Chapter 3

Results

For the classification of stellar light curves, the utilisation of both hidden states (h) and latent

representations (z) proves to be advantageous. Hidden states encapsulate the temporal dynamics

inherent to light curves. This is crucial for capturing patterns such as periodicity and trends over

time. Latent representations are hidden states passed through a feed-forward network, in our

case a projection layer consisting of linear transformations, LeakyReLU activation, and dropout

regularisation. Latent representations offer a condensed version of the input data, with the goal

of emphasising the key features that are essential for classification.

Given the distinct characteristics of stellar light curves, the combined use of h and z can signifi-

cantly improve model efficacy. h leverages the sequential nature of the data to capture dynamic

changes, while z distills this information into a feature-rich representation ideal for classifica-

tion.

Figures 3.1,3.2,3.3, and 3.4 show the PCA representation of the hidden states with the colour

axis representing different features from the PRIMVS catalogue.

Figure 3.1 shows the PCA representation of the hidden states as a function of VVV colours.

There is a slight indication of a correlation with clumps of colours loosely forming. This is

a weak correlation however and the correlation is dominated by noise. The plot demonstrates

the model’s potential to identify previously unlabelled stellar classes that feature a correlation

with VVV colours, despite this colour information not being a factor in the latent space con-

struction. This ability to correlate with known physical properties, despite the model not being

explicitly trained on them, hints at a correlation with stellar class. This suggests that the cluster-

ing based on light curve morphology is likely real because morphology is related to class and,

independently, colour is also related to class.

Figure 3.2 shows the PCA representation of the hidden states as a function of basic statistics

for the light curves: skewness, kurtosis (in log10), amplitude, and period. We observe a strong

14
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FIGURE 3.1: A 2 dimensional PCA representation of the hidden states (h) colour coded with
respect to VVV colours. The plot demonstrates the ability of the model to identify previously
unlabelled stellar classes which feature a correlation with VVV colours, despite this colour info

not being a factor of the latent space construction.

correlation with skewness, indicating that the contrastive curves method is effectively creating

representations based on the shape of the light curve. This is a crucial validation that our model

is sensitive to morphological features, which are essential for distinguishing different types of

variable stars. In contrast, we do not see a strong correlation with kurtosis, which may be due

to the challenging nature of representing the distribution shape accurately. Kurtosis measures

the tails of the distribution, and its weaker correlation might indicate that the model does not

prioritise these features as strongly as skewness or other statistics. Encouragingly, there is a

visible correlation with both amplitude and period, which are commonly used together to form a

Bailey diagram to aid in stellar classification. This suggests that the model captures key periodic

characteristics and the extent of brightness variation in the light curves. The independence of

these correlations from skewness further supports the robustness of the model, demonstrating

its ability to consider multiple dimensions of variability simultaneously. This independence

hints at the deeper complexity of the latent space representations, indicating that the model can

discern and encode various aspects of the light curves. By clustering light curves based on
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FIGURE 3.2: A 2 dimensional PCA representation of the hidden states (h) colour coded with
respect to Skew, Kurtosis, Amplitude and Period (from top left to bottom right).

shape, amplitude, and period without explicit input on these statistics, the model demonstrates

its capability to uncover intrinsic patterns in the data. This alignment with known statistical

properties underscores the reliability of the model’s representations, providing confidence in its

application to other astronomical datasets.

Figure 3.3 shows the PCA representations as a function of more statistical features extracted

from the light curve. We see a relatively strong correlation with every feature shown. A.M

Cody’s ‘M’ value measures the asymmetry in the light curve, with higher values indicating

more pronounced asymmetry, a key parameter for identifying eclipsing binaries. The median

buffer range percentage captures the proportion of points within a small range around the median

magnitude. The range of cumulative sum assesses the overall variability, with larger values

indicating greater variability. The maximum slope identifies the steepest change in brightness,

highlighting rapid variability. The independent correlations observed in the PCA representations

further highlight the model’s ability to capture more nuanced details of light curve variability.
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FIGURE 3.3: A 2 dimensional PCA representation of the hidden states (h) colour coded with
respect to ‘M’, the median buffer range percentage, the range of cumulative sum, and the max-

imum slope (from top left to bottom right).

Figure 3.4 shows the PCA representations as a function of features that might indicate data qual-

ity or non-desirable correlations. Ideally, the latent space should exhibit minimal dependence on

factors such as Galactic position, apparent magnitude, or photometric uncertainty. In these rep-

resentations, we observe no clear correlation with Galactic position, indicating that the model is

effectively capturing intrinsic properties of the light curves rather than spatial biases. However,

a correlation with both magnitude and its associated error is evident. The augmentations used

in this method aim to mitigate these dependencies, but they are fundamentally constrained by

the assumption that photometric uncertainty is uncorrelated scatter. This assumption is likely

not always true, leading to residual correlations. Addressing this limitation, future iterations of

this work should focus on developing more sophisticated models for photometric uncertainty.

Such models would account for correlated noise and other systematic effects, enhancing the

robustness of the latent space representations by removing unwanted dependencies.

Figure 3.5 shows the PCA representation of the latent representations, z. It can be seen that these

representations provide less useful representations of the latent space. This is likely because the
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FIGURE 3.4: A 2 dimensional PCA representation of the hidden states (h) colour coded with
respect to Galactic latitude, longitude, madian magnitude and median magnitude error (from

top left to bottom right).

latent representations are the hidden states which have been passed through an auto-encoder.

Ablative testing has shown 64 dimensions to be the minimum at which the auto-encoder still

preserves all apparent semantically useful information. It makes sense that further reducing this

information via PCA is not useful. This does not mean the latent representations are useless;

rather, they are hard to properly visualise in lower dimensions.
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FIGURE 3.5: A 2 dimensional PCA representation of the latent representation (z) colour coded
with respect to Skew, Kurtosis, Amplitude and Period (from top left to bottom right).
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3.1 Latent Space Exploration

We can use the classifications obtained in via Gaia as a way of verifying this method. A decision

tree based is employed on a Gaia training set and extracted astrometric, colour and time series

features. This means that it is almost entirely independent of the contrastive curves method. Fig-

ure 3.6 shows two views of the 3 dimensional PCA representation of the hidden states. A clear

separation can be seen between stellar class predicted by the decision tree in the latent space.

This further suggests that we are indeed generating semantically meaningful representations of

phase folded light curves.

Given that we see distinct clusters of labelled classes in figure 3.6, we can look for unlabelled

objects within these clusters. We are effectively using these externally labelled classes to trace

the classes from our contrastive curves representations. We expect the unlabelled objects within

each cluster to be of the class that the cluster represents. The centre of each cluster is defined

as the mean value (in terms of the 3-dimensional latent space projection) of all sources with a

probability > 0.7, entropy < 0.2, and confidence metric > 0.9. Figures 3.7, 3.8, 3.9 and, 3.10

show the phase folded light curves of the 4 nearest neighbours to the centre of the Eclipsing

Binary, RR Lyrae, Cepheid, and Ellipsoidal clusters, respectively. These figures highlight the

ability of the model to accurately classify and identify new members of these stellar classes.
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FIGURE 3.6: Two different points of view for the 3 dimensional PCA representation of the
hidden states (h). The dark green is eclipsing binary, pink is long-period variables, yellow is rr

lyrae, red is cepheids, and light green is ellipsoidals.
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FIGURE 3.7: The phase folded light curves of the 4 nearest neighbours to the centre of the
Eclipsing Binary cluster.

FIGURE 3.8: The phase folded light curves of the 4 nearest neighbours to the centre of the RR
Lyrae cluster.
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FIGURE 3.9: The phase folded light curves of the 4 nearest neighbours to the centre of the
Cepheid cluster.

FIGURE 3.10: The phase folded light curves of the 4 nearest neighbours to the centre of the
Ellipsoidal cluster.
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Conclusions

The paper demonstrates the effective use of a novel neural network architecture, which leverages

contrastive learning with a gated recurrent neural network backbone, to generate semantically

meaningful representations of stochastically sampled time series data. This approach proves

to be effective for analysing astronomical time series data, capturing the complex, dynamic

behaviours characteristic of variable stars.

Training the model presented unique challenges, primarily due to the novelty of the approach

and the complexity of the time series data. Through extensive experimentation, including two

rounds of grid searches, some optimal hyperparameters were identified.

The analysis presented here is by no means exhaustive and only seeks to prove the efficacy of

this method. We have shown with figures 3.6- 3.10 that there is good agreement between the

Gaia trained decision tree based classification and the contrastive curves method. It follows that

using the output of contrastive curves in the decision tree would likely improve classification

accuracy.

This work showcases the potential of contrastive learning models to revolutionise our under-

standing of astronomical time series data. By effectively capturing the essence of variable stars

in fixed-length embeddings, this approach opens up new possibilities for automated classifica-

tion and analysis in the era of Big Data in astronomy.

24



Bibliography

Abul-Hayat, M., Stein, G., Harrington, P., et al., 2020. Self-Supervised Representation Learning

for Astronomical Images. arXiv e-prints, arXiv:2012.13083.

Anderson, T.W. and Darling, D.A., 1952. Asymptotic Theory of Certain ”Goodness of Fit”

Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics, 23(2):193 .

BAART, M.L., 1982. The Use of Auto-correlation for Pseudo-rank Determination in Noisy III-

conditioned Linear Least-squares Problems. IMA Journal of Numerical Analysis, 2(2):241.

Belokurov, V., Evans, N.W., and Du, Y.L., 2003. Light-curve classification in massive variability

surveys - I. Microlensing. Monthly Notices of the Royal Astronomical Society, 341(4):1373.

Bundy, K., Bershady, M.A., Law, D.R., et al., 2015. Overview of the SDSS-IV MaNGA Survey:

Mapping nearby Galaxies at Apache Point Observatory. ApJ, 798(1):7.

Charnock, T. and Moss, A., 2017. Deep Recurrent Neural Networks for Supernovae Classifica-

tion. The Astrophysical Journal Letters, 837(2):L28.

Chen, T., Kornblith, S., Norouzi, M., et al., 2020. A Simple Framework for Contrastive Learning

of Visual Representations. arXiv e-prints, arXiv:2002.05709.

Chen, T., Kornblith, S., Swersky, K., et al., 2020a. Big self-supervised models are strong semi-

supervised learners. CoRR, abs/2006.10029.

Chen, X., Fan, H., Girshick, R.B., et al., 2020b. Improved baselines with momentum contrastive

learning. CoRR, abs/2003.04297.

Cho, K., van Merrienboer, B., Bahdanau, D., et al., 2014. On the properties of neural machine

translation: Encoder-decoder approaches. CoRR, abs/1409.1259.

Cody, A.M., Stauffer, J., Baglin, A., et al., 2014. CSI 2264: Simultaneous Optical and Infrared

Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence

for Multiple Origins of Variability. AJ, 147(4):82.

Deb, S. and Singh, H.P., 2009. Light curve analysis of variable stars using Fourier decomposition

and principal component analysis. A&A, 507(3):1729.

25



Bibliography 26

Devlin, J., Chang, M.W., Lee, K., et al., 2019. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computa-

tional Linguistics, Minneapolis, Minnesota.

Dewdney, P.E., Hall, P.J., Schilizzi, R.T., et al., 2009. The Square Kilometre Array. IEEE

Proceedings, 97(8):1482.

Donoso-Oliva, C., Becker, I., Protopapas, P., et al., 2022. ASTROMER: A transformer-based

embedding for the representation of light curves. arXiv e-prints, arXiv:2205.01677.

F.R.S., K.P., 1901. Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559.
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