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ABSTRACT

The ability to automatically and robustly self-verify periodicity present in time-series astronomical data is becoming more
important as data sets rapidly increase in size. The age of large astronomical surveys has rendered manual inspection of time-
series data less practical. Previous efforts in generating a false alarm probability to verify the periodicity of stars have been
aimed towards the analysis of a constructed periodogram. However, these methods feature correlations with features that do not
pertain to periodicity, such as light curve shape, slow trends and stochastic variability. The common assumption that photometric
errors are Gaussian and well determined is also a limitation of analytic methods. We present a novel machine learning based
technique which directly analyses the phase folded light curve for its false alarm probability. We show that the results of this
method are largely insensitive to the shape of the light curve, and we establish minimum values for the number of data points
and the amplitude to noise ratio.
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1 INTRODUCTION

The identification of periodic variable stars is not a trivial task;
well-understood statistical measures can be used to identify variabil-
ity in time-series but not so easily periodic variability. The Stetson
variability index ‘I’ (Stetson 1996) compares the variability of each
observation with its neighbour and their errors. The Von Neumann
eta index ‘𝜂’ (Neumann 1941) represents the ratio of the mean of
the successive differences squared, to the variance of the light curve.
Both of thesemethods are reasonably robust in detecting variability in
time-series. More simplistic methods, such as a comparison between
some measure of scatter (Inter Quartile Range, Standard deviation 𝜎
or Median Absolute Deviation) and the uncertainty, have also been
shown to be useful (Sokolovsky et al. 2017). Using tools such as the
Lomb-Scargle method (Lomb 1976; Scargle 1982) and Phase Dis-
persion Minimisation (PDM, Stellingwerf 1978), we can construct a
periodogram to probe for periodic variability. Nevertheless, extrema
in the periodogram are likely to be present regardless of whether or
not the source is truly periodic. These extrema can scale with the
amplitude of the periodic signal such that periodograms of periodic
sources become distinct from truly random variability. However, in
cases where a light curve features aperiodic or secular variability,
ambiguities can arise (Park et al. 2021). This is of particular issue
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when dealing with stars which can feature multiple sources of vari-
ability, such as asymptotic giant branch stars (Templeton et al. 2005),
whose long term periodicity could be undifferentiable to that of sec-
ular variability by periodogram analysis alone. Furthermore, their
values do not scale universally (i.e. the peak value for an aperiodic
source may be the same as that for a periodic source).
In cases where extrema are not present, this could be interpreted

as an indication of insufficient periodogram coverage or the lack of
periodic variability.
Thus, we do not automatically obtain a universal measure of pe-

riodicity from a periodogram. If a periodogram shows candidate
periods, then for smaller selections of sources, it is feasible to man-
ually verify the periodicity of each. This is typically performed by
visual inspection of the phase folded light curve. Looking forward, in
the current and future age of survey astronomy with surveys such as
LSST (Ivezić et al. 2019), ZTF (Bellm et al. 2019), Kepler (Borucki
et al. 2003) and TESS (Ricker et al. 2015), we anticipate time-series
catalogues of sizes that render sufficient manual inspection increas-
ingly non-viable. Hence, a reliable and robust metric for identifying
periodicity is required.
It is not a guarantee that a large survey will feature high cadence

sampling. Surveys such as VISTAVariables in the Via Lactea (VVV,
Minniti et al. 2010; Saito et al. 2012), the NEOWISE mission of the
Wide Field Infrared Survey Explorer (Wright et al. 2010; Mainzer
et al. 2014) and Gaia (Gaia Collaboration et al. 2021) have cata-
logues which can also feature large sample sizes for which rigorous
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human inspection is impractical. These surveys contain relatively
few observations for each source, an issue that is also very common
in small, targeted observing projects. The sparse sampling makes it
harder to confirm periodicity with classical methods.
The metric for determining periodicity in a time-series is com-

monly referred to as a False Alarm Probability (FAP). Previous work
on determining an accurate FAP has largely been directed toward
the analysis of the constructed periodogram. These methods, such
as the method proposed by Baluev (2008), employ extreme value
statistics to determine an upper bound for the false alarm probabil-
ity of a Lomb-Scargle periodogram. This has the clear limitation
that the method is designed to distinguish sinusoidal variations from
Gaussian white noise, not accounting for stochastic variability, non-
Gaussian errors, imprecise error estimates and non-sinusoidal peri-
odic variations. Baluev (2009) extended their earlier work to the case
of multi-harmonic light curves but this is only a partial solution to
the above issues. Bootstrapping is another commonly used technique
where the periodogram of a light curve that has been randomly shuf-
fled N times to create N aperiodic periodograms is compared to that
of the unshuffled light curve. The FAP in this case is the percentage
of times the peak of an aperiodic periodogram is larger than that of
the peak from the suspect periodic periodogram.
In Stellingwerf (1978), a statistical analysis of the constructed

PDM periodogram is used to obtain a metric of false alarm prob-
ability (P-value). This method assumes that photometric errors are
perfectly estimated Gaussians. The absence of any other aperiodic
variability is also assumed. There is also no treatment of spuri-
ous artificial periodic signals, which can occur with unevenly and
sparsely sampled light curves. Many surveys feature these periods at
varying rates of incidence. It is of particular note for ground-based
surveys with semi-regular observing patterns, such as the VVV sur-
vey. Methods such as PDM that bin the phase-folded light curve
to construct their periodogram are also limited by imperfections in
the model. This can become increasingly significant as sampling de-
creases. This issue exists even with the binless approach to PDM
presented by Plavchan et al. (2008). Separately, heuristic methods
based on reduced 𝜒2 statistics have been employed to distinguish
true and false periodic variable star candidates (e.g. Irwin et al.
2009). This explicitly acknowledges the effects of an imperfect light
curve model and imprecise photometric uncertainties. In this work,
we show how we can utilise neural networks to differentiate between
true and false periodic variable star candidates without the need for
a prior light curve model.

2 METHOD

In our approach, the analysis of the light curve is achieved via a
Recurrent Neural Network (RNN, Hochreiter & Schmidhuber 1997).
An RNN was chosen because they are designed and used for serially
correlated data, such as astronomical light curves. Previous efforts in
their use with light curves have shown their applicability and ability
to parse astronomical time-series data (Burhanudin et al. 2021; Zhang
& Zou 2018). This network is trained on pre-labelled periodic and
aperiodic phase-folded light curves of variable stars. The network
was trained for 96 epochs1 with an Adam optimiser (Kingma & Ba
2014) and with 20% of the training data used as a validation set.
Early stopping was used to halt training as soon as the incremental
change in the validation loss function, Δ𝐿 < 10−5.

1 An ‘epoch’ here is an iteration over the whole training set

The model is constructed with 13 Gated Recurrent Unit (GRU,
Cho et al. 2014) layers, 1024 nodes per layer and a binary cross
entropy loss model. The choice of GRUs over Long-Short Term
Memory (LSTM, Hochreiter & Schmidhuber 1997) was motivated
by the calculated loss, which was lower for GRUs. The RNN was
written in Keras (Chollet et al. 2015).
Ablative testing has shown that the specifics of the architecture of

the network are not crucial and having ‘enough’ GRUs is sufficient
for operability.

2.1 Data preparation

The input training data consists of the magnitude (𝑚𝑖), phase (𝜙𝑖)
and change in phase (i.e. Δ𝜙𝑖 = 𝜙𝑖 − 𝜙𝑖−1). Magnitude errors were
not used for this method as they commonly do not fully represent
the true photometric uncertainty. We tested various combinations
of features and removing the magnitude error consistently improved
performance with lower loss and higher accuracy. Instead, we reject
any points with a large magnitude error (𝑚𝑖,𝑒𝑟𝑟 ≥ 0.1 in this case).
We also reject points with a high DoPHOT (Schechter et al. 1993)
‘Chi’ parameter, which indicates a poor fit to a stellar profile.
The input also includes a feature that is derived from an interpo-

lated fit of the time-series with 200 evenly spaced points, performed
by an inverse distance-weighted K-nearest neighbours (KNN) re-
gressor (Fix & Hodges 1951) which was taken from Scikit-learn (Pe-
dregosa et al. 2011). This was performed as a form of smoothing
in an attempt to more clearly display variability with evenly spaced
data.
A randomly variable light curve will have an interpolated fit that

tends towards a straight line. Each of these features were added after
ablative testing (i.e. features were added and removed iteratively and
the combination of features that produced the highest accuracy and
lowest loss was used). Each light curve was either cut to 200 data
points in size or padded with zeroes to a length of 200.
The same light curve is phase shifted randomly 10 times by an

amount between 0 and 2𝜋 and each version is shown to the neural
network. This is done in an attempt to remove a dependency on the
starting position of the light curve. This is similar to the methodology
for contrastive learning (Chen et al. 2020a). We do not want the
network to care about the absolute phase value.
Alternatively, we could ensure the light curve is always ordered

froma set point in the light curve, such as the turning points. However,
we found this step to be unreliable with noisy data. A single unfiltered
outlier or otherwise erroneously extreme point would cause such an
approach to fail as the light curve’s minima could be incorrectly
identified.

3 DATA

The training data used for training the neural network FAP (NN FAP)
is a combination of both real and synthetic light curves.
In the trained model used for this paper, there were 20 000 real

and 60 000 synthetic light curves with half of each corresponding
to periodic or aperiodic. This means that a FAP of 0 was given to
the 10 000 real and 30 000 synthetic periodic light curves and a
FAP of 1 was given to the other 10 000 real and 30 000 synthetic
aperiodic light curves. The synthetic light curves were split evenly
across each of the five listed equations (1–4).
Through the development of this method, it was found that a small

number of mislabelled light curves can have a large impact on the
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Figure 1. Some example real aperiodic (red) and periodic (green) light curves
used for training. The black points represent the evenly spaced fit provided
by the KNN regressor.
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Figure 2. Showing the distribution of the number of data points (N), signal
to noise ratio and cycles (light curve length / period) for the training set used.

abilities of this method (i.e. an aperiodic light curve being labelled
as periodic or vice versa).

3.1 Real training data

The training data are VVV light curves whose periodic nature was
supported by classification from two optical surveys. A set of 10,000
known real periodic light curves were identified by eye (by co-
authors NM, CM & WC) after cross-matching data from the VVV
survey, (and a pre-release version of its time-series catalogue, VIRAC
2-𝛽 (Smith et al. 2018, Smith et al., in prep) with other known peri-
odic variable star catalogues, namely the ZTF catalogue of periodic
variable stars and the ASAS-SN catalogue of variable stars (Chen
et al. 2020b; Pawlak et al. 2019). The cross-matching was performed
to generate a list of suspect periodic and aperiodic variable stars.
All of the 10,000 aperiodic light curves were identified by eye as

rejected periodic variables.
Figure 1 shows a random selection of real training light curves and

their interpolated fit. Both the interpolated fit and the raw magnitude
measurements are given to the RNN.
Figure 2 shows the distributions of number of data points, signal

to noise ratio and number of cycles in the time series for the training
data. The real data is drawn directly from this distribution.

3.2 Synthetic training data: Periodic light curves

Synthetic light curves were created via the use of a real light curve
with a periodic signal injected, similar to the work by Graham et al.
(2013). An overview of the steps taken are as follows:

(i) Remove all photometric information from a real light curve,
retaining only the time stamps.
(ii) Inject periodic signal into ‘blank’ light curve (see equa-

tions 1–4).
(iii) Generate the errors by sampling from those associated with

the real photometry, using a look-up table.
(iv) Scatter light curve based on the injected error.

Training the neural network on exclusively sinusoidal light curves
could bias our FAP against Eclipsing Binaries and other more com-
plex light curves.
Figure 3 shows an example of each of the forms of light curves

generated with 1000 measurements with an amplitude of 1mag.
These equations aim to roughly (but not exactly or comprehensively)
model the common types of pulsators and binary light curves that
are seen (Molnar et al. 2022). Type 1 is a distorted sinusoid which is
a fairly standard form for synthetic light curves (Cincotta et al. 1995;
Huijse et al. 2012). Types 2&5 are eclipsing binary-like light curves
(i.e. more than one turning point per period). Type 3 is used to mimic
the common identifying feature of a contact binary system (Kirk
et al. 2016) and Type 4 is a simple sinusoid. An important reason
for using multiple shapes to train the network is to remove as much
of a dependency on light curve shape as possible. This is similar to
the methodology for contrastive learning. By showing the network
multiple different shapes of a periodic signal we aim to remove any
biases related to its shape.
The method by which the synthetic data is created also means that

the light curve parameters are drawn from the distributions shown
in Figure 2. The periods used are randomly selected from a uniform
distribution between 0.1 and half the length of the light curve (pe-
riod∼ U(0.1,∼ 1500)). We note that the period (or number of
cycles) used for the synthetic light curves is largely inconsequen-
tial to how it is perceived by the RNN. The RNN is only shown the
phase fold of the light curve and so there is little difference be-
tween otherwise identical light curves with different periods. This
is also the case for the total time range of the light curve. Provided
at least one cycle is captured, the number of measurements and
signal-to-noise are the limiting factors. This is a potential caveat
for this method as a low FAP could be assigned for a light curve
with only one cycle, which is not sufficient for the actual identifi-
cation of periodicity. We recommend only trusting the FAP from
this method if the period is less then half of the length of the light
curve (i.e. at least two cycles are captured).
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Figure 3. Examples of each of the forms of the light curves used for testing
and training the neural network FAP.

A periodic signal is added to the source light curve, and the photo-
metric error is derived using a KNN search of a dataset containing in-
formation about the photometric uncertainty of 1 000 000 data points
from the VIRAC database. This dataset is utilised to identify the 100
nearest neighbours, from which the mean and standard deviation are
computed.
Each data point in the light curve has its photometry (𝑚) and

photometric error (𝑚𝑒𝑟𝑟 ) drawn from a Gaussian constructed of
these 100 nearest neighbours.

3.3 Synthetic training data: Aperiodic light curves

We employ two methods to generate aperiodic light curves: a real
or synthetic periodic variable has its photometric order randomly
shuffled. The time data is left unmodified to conserve the observing
cadence of the original survey. We effectively create a light curve of
random noise with the survey’s observing pattern conserved. This
method also removes any other correlated effects, such as photomet-
ric uncertainty, that may be present in real aperiodic light curves.
One caveat present is that by destroying correlated effects, the neural
network could differentiate between the aperiodic and periodic syn-
thetic light curves with greater ease. The second method of aperiodic
synthetic light curve generation involves taking a known non-variable
star (identified with a Stetson index <0.1) and re-sampling the photo-
metric points with a larger scatter. For each measurement a Gaussian
is constructed with 𝜇 = 𝑚𝑖 and 𝜎 ≥ 3 × 𝑚𝑖,𝑒𝑟𝑟 , where 𝑚𝑖,𝑒𝑟𝑟 is
the measurement error. The light curve is then re-scaled to ensure a
realistic amplitude.
This method retains as much temporally correlated, but non-

periodic, information as possible compared to the random shuffle
method. An example of this is with astronomical seeing which
can vary on long timescales, affecting multiple measurements.
With VVV (and subsequent catalogue VIRAC 2-𝛽) data we have
instances where bad seeing causes DoPHOT to systematically
underestimate flux in crowded fields. Such a case could appear
as a non-periodic signal in the light curve. In less crowded fields,
bad seeing could create correlated uncertainty which may occa-
sionally lead to a spurious periodic signal. This is of particular
note as the neural network is never shown the photometric uncer-
tainty. This method of inflating measurement error will weaken
but not fully destroy these correlated effects. The random shuffle
method enables training with non-Gaussian aperiodic signals. Due

Figure 4. Examples of a synthetic sinusoidal light curve varying through the
number of data points in the light curve on the x-axis and the amplitude of
the light curve in the y-axis. The median magnitude error for each point was
0.1.

to the limitations of these methods, it is beneficial to also have real
training data. The synthetic data has the advantage of volume with
the certainty of aperiodicity. This allows us to construct a training
data set large enough to train an RNN.

3.4 Test Data

We generate 3 data sets to test our classifier. A real data set was con-
structed by manually classifying 8000 previously unseen real light
curves taken from the same VVV survey. These 8000 sources were
identified from the same ZTF and ASAS-SN periodic catalogues that
were used in training. Each light curve has a 𝐴/𝜎̄ > 2 (where ‘𝐴’
is the amplitude calculated as the difference between the 1% and
99% percentile after sigma clipping and ‘𝜎̄’ is calculated as the me-
dian value of the magnitude error.) The manual classification of the
real light curves involved selecting phase-folded periodic variables
by eye. This was independently repeated multiple times by three
astronomers to ensure reliability. All of the astronomers agreed on
classification. Any ambiguous light curves were removed from the
set. Two synthetic data sets were also constructed via the method
described in Section 3. The data set ‘Variable N’ was generated as
80 000 identical synthetic light curves with only the number of data
points per light curve varied (10 < N < 600). A median SNR (𝐴/𝜎̄)
of 10 was generated for each of these. The data set ‘Variable SNR’
was generated as 80 000 identical synthetic light curves with only the
signal-to-noise ratio varied. For each light curve in the Variable SNR
data set, there were 200 data points used. Figure 4 exemplifies both
‘Variable N’ and ‘Variable SNR’ on the 𝑥 and 𝑦-axes, respectively.
The four types of synthetic variables used were evenly split for both
of the synthetic data sets.

4 EXPERIMENTAL RESULTS FROM RNN

To quantify the performance of the NN FAP we can test its ability
as a binary classifier and compare it to the commonly used Baluev
method. We use the generalised Lomb-Scargle periodogram along
with its associated FAPas described byZechmeister&Kürster (2009)
for our calculations of the Baluev FAP. The Baluev FAP typically
lies in a range between unity and 10−200 and so the y-axis of the
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Figure 5. Showing the ROCCurve for the neural network andBaluevmethods
as a binary classifier. Solid line real data set classified by eye. Dashed line
synthetic data set where the number of measurements was varied (Figure 8).
Dotted line a synthetic data set where the SNR was varied (Figure 9).

Source NN FAP Baluev

Real 0.99193 0.95245
Variable SNR 0.99808 0.97843
Variable N 0.99703 0.97393

Table 1. Showing the AUC for each data set and method.

Baluev FAP plots have been shown as both linear and logarithmic
scaling.

4.1 Performance Measurements

TheReceiverOperator Characteristic (ROC) curve is used tomeasure
the capability of a binary classifier as the threshold for classification
is varied. An idealised binary classifier will have a threshold at which
the sensitivity and specificity are equal to 1.
Figure 5 shows the true positive rate (otherwise known as the

sensitivity) versus the false positive rate (otherwise known as 1 -
specificity). Equation (5) shows more clearly how sensitivity and
specificity are defined (where TP and TN are True Positive and
Negative respectively. FP and FN are False Positive and Negative
respectively.)

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
Specificity =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5)

The Area Under the ROC Curve (AUC) can be calculated as an
evaluation metric for a binary classifier. Table 1 shows the AUC for
each tested data set. This shows that the NN FAP method has a larger
AUC for each data set than the Baluev method. This indicates that
the NN FAP method performs better in each test. However, the AUC
metric does not tell the whole story, as discussed below.
Figure 6 shows the median NN FAP as a function of N and 𝐴/𝜎̄.

This was calculated for 80,000 synthetic sinusoidal periodic light
curves (i.e. generated with equation 4). The calculations were per-
formed with a range of 3 < N < 100 and 0.1 < 𝐴/𝜎̄ < 2.1. We
can see that this method appears reliable provided 𝐴/𝜎̄ >, 1.5 and
N > 40. We note that a median value does not reveal occasional fail-
ures and we suggest a limit of N > 50 for greater reliability, based

Figure 6. Showing the FAP calculated for synthetic light curves as a function
of the number of data points ‘N’ in the x-axis and 𝐴/𝜎̄ in the y-axis

on the results in section 4.2 and Figure 8. A small amplitude with
respect to the uncertainty is likely to give false negatives whereas a
small number of measurements is likely to give false positives.

We also randomly selected 1000 eclipsing binary stars from
the VIVACE catalogue (Molnar et al. 2022). This catalogue was
generated from the same VVV data that this model was trained
on. All light curves were independently verified as eclipsing bi-
nary for this test. We construct a periodogram with both Lomb-
Scargle and PDM and choose whichever period produced the
lowest NN FAP. We find that 997 of the 1000 were identified as
periodic with a FAP < 0.1. The three light curves which failed to
be identified each featured a FAP > 0.6. In each of these three
light curves there was a significantly shorter transit time paired

MNRAS 000, 1–10 (2022)
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Figure 7. Both false alarm probabilities versus the number of measurements
in the synthetic periodic light curve. The colours and markers correlate to
those shown in Figure 3. Top : Baluev FAP versus 𝑁 . Bottom : NN FAP
versus 𝑁 .

with N < 60 measurements. The identification of the correct pe-
riodicity can be an issue when a light curve can look periodic
when phase folded at multiple different periods. If an eclipsing
binary features a similar size and shape for each eclipse then the
NN FAP can erroneously be assigned half the true period as the
two dips in the light curve are likely to be undifferentiable in
the phase fold. This can be problematic for equal mass eclipsing
binary systems.

4.2 FAP vs N

The number of measurements used to constitute a light curve can
vary by orders of magnitude dependent on the survey. Surveys such
asKepler and TESS feature highly sampled light curveswhich should
not pose an issue to any FAP technique. However, this is not always
the case and many surveys feature light curves with fewer than 100
measurements. Figure 7 shows how the Baluev FAP and the NN FAP
vary as a function of the number of measurements ‘N’ in a light
curve. The NN FAP does not produce any significant number of
false negatives as the number of measurements decreases to 10. The
Baluev FAP has a clear trend as a function of N and starts to increase
to a problematic range of values as N approaches ∼50measurements.
It can also be seen that the Baluev FAP has a dependency on the shape
of the light curve with more sinusoidal light curves assigned a lower
FAP compared to more complex light curves such as eclipsing binary
shapes. This is an issue as it can lead to incorrect conclusions on the
demographics of variable stars.
Figure 8 (bottom panel) shows that the NN FAP sometimes falls to

low values for aperiodic light curves as 𝑁 < 50, potentially leading
to false positive classifications. These false positives arise as any
variable light curve with a small number of points will more easily
represent a periodic light curve at a given phase fold. Caution should
be taken with this method when searching for periodic variables with
fewer than 50 measurements. By contrast, the Baluev FAP does not
suffer from this problem but Figure 8 (top panel) shows that it is
more likely to assign false negatives to periodic light curves within
the same range.

It is not possible to define a selection for either method which
we can use to perfectly separate the periodic and aperiodic light
curves. Such a selection would be set by the user depending
on preference with completeness and purity. The periodic light
curves shown in Figure 8 have a maximum NN FAP of 0.791
but the minimum NN FAP for aperiodic light curves is 0.01.
The Baluev FAP has a maximum value of 0.015 for periodic
light curves but a minimum value of 1.197 × 10−15 for the ape-
riodic light curves. The values for the Baluev FAP still feature
confusion between periodic and aperiodic light curves despite
never approaching 1. The median Baluev FAP for the aperiodic
light curves when 𝑁 ≤ 100 is 0.0012 and when 𝑁 ≤ 50 it is
0.0005. Using the widely adopted criterion for the Baluev FAP
of 𝑙𝑜𝑔10 (𝐹𝐴𝑃) < −2 (Koeltzsch et al. 2009; Herbst et al. 2000;
Chen et al. 2020a; Botan et al. 2021) yields misidentification of
only four aperiodic stars as periodic, while incorrectly categoris-
ing 13,849 (46.4%) aperiodic stars as periodic. In Molnar et al.
(2022) a Baluev FAP selection of 𝑙𝑜𝑔10 (𝐹𝐴𝑃) < −10 was used
to define a reliable but incomplete set for training. If we were to
use that cut for this data we would have misidentify 1152 (3.86%)
periodic light curves as aperiodic and 502 (1.68%) aperiodic light
curves as periodic. If we use a NN FAP of 0.15 we misidentify 1
periodic light curve as aperiodic and 400 (1.34%) aperiodic light
curves as periodic.
False positives will arise, or not, depending on the FAP threshold

value that is adopted. The NN FAP method performs very well in the
AUC test for Variable N (see Table 1) because, even where aperiodic
light curves have a low FAP, the periodic light curves have even
lower FAP values. This allows the binary classifier to be successful,
in principle, if the threshold FAP could be ideally selected. However,
in practice, this will rarely be possible.

4.3 FAP vs Amplitude

The signal-to-noise of a light curve is a common source of erroneous
periodicity classification. Periodic variable stars can host a range of
amplitudes depending on the source of variability. As such, it is not
uncommon to investigate variable stars whose variability is similar
to, or below, the photometric uncertainty.
It can be seen in Figure 9 that both the NN and Baluev FAP feature

a dependency on 𝐴/𝜎̄. Both the NN FAP and the Baluev FAP suffer
from false negative rates as 𝐴/𝜎̄ → 1.5. Again, it can be seen that
the NN FAP does not suffer from a structure-dependent FAP, unlike
the Baluev FAP. This is not surprising as the Lomb-Scargle method,
to which the Baluev FAP is applied, is effectively a sinusoidal fitting
method and hence will feature such structure-based dependencies.

The median Baluev FAP for the periodic light curves when
𝐴/𝜎̄ ≤ 1.25 is 0.011 and 0.020 for aperiodic sources. The NN
FAP at the same 𝐴/𝜎̄ has a median value of 0.959 for periodic
sources and 0.998 for aperiodic sources. Both methods feature a
significant level of confusion at such a low 𝐴/𝜎̄ but they do so at
different absolute values, the Baluev FAP rarely features values
larger than 0.1. If we use the same value of 𝑙𝑜𝑔10 (𝐹𝐴𝑃) < −10
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Figure 8. Both false alarm probabilities versus the number of measurements
in the light curve. The red points show the FAP assigned to aperiodic light
curves and the blue shows periodic light curves. It can be seen that the
Baluev FAP is more likely to assign false negatives whereas the NN FAP is
more likely to assign false positives. Top : Baluev FAP versus 𝑁 . Bottom :
NN FAP versus 𝑁 . Each light curve here featured 𝐴/𝜎̄ = 10. The marker
shapes correspond to those shown in Figure 3 (i.e. a cross represents ‘Type
1’ and a plus ‘Type 2’...).

from Molnar et al. (2022) for the Baluev FAP we misidentify 2028
(3.86%) periodic light curves as aperiodic. If we use a NN FAP
of 0.15 we misidentify 1996 periodic light curve as aperiodic.
Neither method misidentifies any aperiodic sources as periodic
sources.
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Figure 9. Both false alarm probabilities versus the amplitude of a synthetic
periodic light curve divided by the median average of the photometric uncer-
tainty. The colours and markers are the same as that shown in Figure 3. Top :
Baluev FAP versus 𝐴/𝜎̄. Bottom : NN FAP versus 𝐴/𝜎̄.

5 TESTING WITH OTHER SURVEYS

Our proposed method of calculating a FAP is universal and indepen-
dent of the method of period detection. We can also show that the
NN FAP method can be applied to data that is not drawn from the
same distribution as the training data. Figure 11 shows periodic and
aperiodic variable stars in the CRTS (Drake et al. 2009). Figure 12
shows them for ZTF. Figure 13 shows them for kepler. Figure 14
shows periodic variables in OGLE (Udalski et al. 2015) data. Each
of the sub-plots in these figures show the assigned NN FAP.
The top left panel of figure 14 shows the light curves in two fil-

ters for the source "OGLE-BLG-ECL-124368" which appears much
more clearly periodic in ‘I’ than ‘V’. The NN FAP reflects this,
showing a higher FAP for the ‘V’ band data. The ‘V’ band data does
still show a poorly sampled transit at the phase folded period, hence
the NN FAP is above 0.5 but below 0.9. The model used to iden-
tify these variables was trained as described in section 3 with VVV
light curves. The periodicity of each of these stars was identified by
choosing the period which produced the lowest NN FAP extracted
from a PDM periodogram. For both the CRTS and ZTF light curves
the Baluev FAP was sufficient for differentiating between aperiodic
and periodic variables stars. For three of the Kepler light curves the
Lomb-Scargle periodogram incorrectly assigned half of the period
with the a low Baluev FAP. One of the Kepler light curves was not
identified as periodic by the Baluev FAP (Bottom left panel of peri-
odic variables in figure 13). Only one of the OGLE light curves was
correctly identified as periodic in both ‘V’ and ‘I’ by the Baluev FAP
(Top right panel in figure 14) although with notably different FAP of

MNRAS 000, 1–10 (2022)



8 N. Miller et al.

1.0 1.5 2.0 2.5 3.0

10−100

10−75

10−50

10−25

1.00

1.0 1.5 2.0 2.5 3.0

A/σ̄

0.0

0.2

0.4

0.6

0.8

1.0 Aperiodic

Periodic

B
al

u
ev

F
A

P

1.0 1.5 2.0 2.5 3.0

A/σ̄

0.0

0.2

0.4

0.6

0.8

1.0

N
N

F
A

P

Periodic

Aperiodic

Figure 10. Both false alarm probabilities versus the amplitude of synthetic
periodic and aperiodic light curves divided by their median average of the
photometric uncertainty. Both methods show how their reliability begins to
fail at 𝐴/𝜎̄ ≈ 1.5. Top : Baluev FAP versus 𝐴/𝜎̄. Bottom : NN FAP versus
𝐴/𝜎̄. 200 data points were used for these light curves. The marker shapes
correspond to those shown in Figure 3.

9× 10−60 in ‘V’ and 1× 10−235 in ‘I’. Each of the other OGLE light
curves were either incorrectly given half of the true period or given
a Baluev FAP indicative of aperiodic variability. The Lomb-Scargle
periodogram also correctly identified the ‘I’ band period of the bot-
tom left panel with a Baluev FAP of 9.51×10−141 but failed to extract
the correct period for ‘V’ band. The Lomb-Scargle periodogram and
Baluev FAP predominantly struggled with more complex eclipsing
binary shaped light curves.

FAP: 0.999 FAP: 0.997 FAP: 0.006 FAP: 0.006

FAP: 0.996 FAP: 0.990 FAP: 0.005 FAP: 0.006

Figure 11. Randomly selected examples of identified periodic (green, right)
and aperiodic (red, left) variable stars found in the CRTS survey. Each subplot
displays the assigned NN FAP as its title. The green and red points represent
the raw magnitude as a function of phase for the periodic and aperiodic light
curves, respectively. The black points represent the KNN interpolated fit to
the raw light curve. The Baluev FAP for each of the aperiodic sources was
above 2 × 10−5 and the periodic sources were all below 1 × 10−60.

FAP: 0.981 FAP: 0.978 FAP: 0.007 FAP: 0.015

FAP: 0.992 FAP: 0.998 FAP: 0.008 FAP: 0.008

Figure 12. A random sample of identified periodic (green) and aperiodic
(red) variable stars found in the ZTF survey. With each subplot showing the
assignedNNFAP as its title. The Baluev FAP for each of the aperiodic sources
was above 2 × 10−14 and the periodic sources were all below 1 × 10−51.

6 FAP PERIODOGRAM

The NN FAP method presented above can be seen as something
analogous to a neural network version of the PDM method so we
can try to use it as such, i.e. for the construction of a periodogram
rather than false alarm probability calculation. We can calculate a
FAP for a set of trial periods and the period which returns the lowest
FAP should be the correct period. This has the added benefit of
generating a periodogram on a universal scale and thus the FAP is
given along with the periodogram. Currently, this approach is limited
by its computationally demanding nature. Future developments in
computing paired with this method being modified for periodogram
construction purposes will make this work more practical. Figure 15
shows the periodogram constructed for a synthetic light curve (of type
5, Eq. 2) with 200 points, a SNR of 2 and a period of 296.4 days. This
periodogram took 23 minutes to construct and correctly extracted the
correct period (inference was run on 64 CPU cores). This compares
to the 0.2 seconds it took for the PDM method to construct the same
periodogram and achieve the same results (without a FAP). Both the
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FAP: 0.996 FAP: 0.999 FAP: 0.007 FAP: 0.086

FAP: 0.997 FAP: 0.997 FAP: 0.035 FAP: 0.004

Figure 13.A random sample of identified periodic (green) and aperiodic (red)
variable stars found in the Kepler survey. Each subplot shows the assigned NN
FAP as its title. The Baluev FAP for each of the aperiodic sources was above
2×10−4. The bottom left periodic variable has a Baluev FAP of 2.746×10−6.
The other periodic sources were all below 1×10−43 but each had an incorrect
period of half the true period.

NN periodogram and the PDM periodogram suffered from aliasing
at multiples of the true period but both also correctly assigned the
true period the largest peak value.

7 CONCLUSIONS

We have shown that utilising the flexibility afforded by neural net-
works allows a more robust analysis of light curves. Using synthetic
and real data, RNNs can be trained to produce a reliable and univer-
sal measure of periodicity. A study of the parameter space (namely
the signal-to-noise ratio and temporal density) demonstrated how
and when this method fails in comparison with the commonly used
Baluev method. This method remains reliable where 𝑁 > 50 with
𝐴/𝜎̄ > 10 or 𝐴/𝜎̄ > 1.5 with 𝑁 ≥ 200. As we analyse the phase-
folded light curve and not the periodogram, the NN FAP is indepen-
dent of the tools used to construct the periodogram. This method is
more analogous to a universally scaled PDMand so the network is ef-
fectively analysing the structure of the phase-folded light curve. This
has further implications for a possible method of period detection
that were explored in Section 6.
Figure 5 and Table 1 have shown how this method outperforms

the Baluev method for both synthetic and real data. Given a data
set for candidate periodic variable stars, this method will provide a
more complete search for periodicity, at the expense of occasionally
generating more false positives for small N.
We highlight that the most challenging aspect of this method is

the data preparation which is outlined in Section 3. Care must be
given to how the training data is constructed and prepared. This
method is provided both with the ability to retrain on different data
sets as well as pre-trained with the data described above. We expect
to the method to be fully functional in its pre-trained state within the
parameters outlined in this paper. Conversely, this is not the case for
the network’s architecture which was shown by ablative testing to be
relatively inconsequential to the performance.

FAP = 0.134 & 0.766 FAP = 0.003 & 0.003

FAP = 0.003 & 0.002 FAP = 0.019 & 0.018

Figure 14. Periodic variables from the OGLE selection of variable stars. The
green points represent the light curve of the star in the ‘V’ filter and the
purple represent the ‘I’ filter. Three of the stars are identified as periodic in
both V and I filters. The top left panel (OGLE-BLG-ECL-124368) was not
identified as clearly periodic at any period in ‘V’ and a higher NN FAP was
given (although below that found for the aperiodics in figs. 11 to 13) From
top left to bottom right the Baluev FAPS are 0.967 for ‘V’ and 0.9 for the
incorrect period in ‘I’, 9 × 10−60 in ‘V’ and 1 × 10−235 in ‘I’, 0.016 for the
incorrect period in ‘V’ and 9.51× 10−141 in ‘I’, 0.160 in ‘V’ and 6.9× 10−65

for the incorrect period in ‘I’

Figure 15. A periodogram constructed from the NN FAP method. The pe-
riodogram took 23 minutes on 64 cores to compute. The correct minima is
identified despite the binary-like construction of the periodogram.
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are hosted at www.kaggle.com/data sets/niallmiller/nn-
fap. The model, weights and code can also be found at
www.nialljmiller.com/projects/FAP/FAP.html. The training data
used will be available upon any reasonable request to the first author.

REFERENCES

Baluev R. V., 2008, MNRAS, 385, 1279
Baluev R. V., 2009, MNRAS, 395, 1541
Bellm E. C., et al., 2019, PASP, 131, 018002
Borucki W. J., et al., 2003, in Fridlund M., Henning T., Lacoste H., eds, ESA
Special Publication Vol. 539, Earths: DARWIN/TPF and the Search for
Extrasolar Terrestrial Planets. pp 69–81

Botan E., Saito R. K., Minniti D., Kanaan A., Contreras Ramos R., Ferreira
T. S., Gramajo L. V., Navarro M. G., 2021, MNRAS, 504, 654

Burhanudin U. F., et al., 2021, MNRAS, 505, 4345
Chen T., Kornblith S., Norouzi M., Hinton G., 2020a, arXiv e-prints, p.
arXiv:2002.05709

Chen X., Wang S., Deng L., de Grijs R., Yang M., Tian H., 2020b, ApJS,
249, 18

Cho K., van Merrienboer B., Gulcehre C., Bahdanau D., Bougares F.,
Schwenk H., Bengio Y., 2014, arXiv e-prints, p. arXiv:1406.1078

Chollet F., et al., 2015, Keras, https://keras.io
Cincotta P. M., Mendez M., Nunez J. A., 1995, ApJ, 449, 231
Drake A. J., et al., 2009, ApJ, 696, 870
Fix E., Hodges J. L., 1951, PsycEXTRA Dataset
Gaia Collaboration et al., 2021, A&A, 649, A1
Graham M. J., Drake A. J., Djorgovski S. G., Mahabal A. A., Donalek C.,
Duan V., Maker A., 2013, MNRAS, 434, 3423

Herbst W., Rhode K. L., Hillenbrand L. A., Curran G., 2000, AJ, 119, 261
Hochreiter S., Schmidhuber J., 1997, Neural computation, 9, 1735
Huijse P., Estevez P. A., Protopapas P., Zegers P., Principe J. C., 2012, IEEE
Transactions on Signal Processing, 60, 5135

Irwin J., Aigrain S., Bouvier J., Hebb L., Hodgkin S., Irwin M., Moraux E.,
2009, MNRAS, 392, 1456

Ivezić Ž., et al., 2019, ApJ, 873, 111
Kingma D. P., Ba J., 2014, arXiv e-prints, p. arXiv:1412.6980
Kirk B., et al., 2016, AJ, 151, 68
Koeltzsch A., et al., 2009, Astronomische Nachrichten, 330, 482
Lomb N. R., 1976, Ap&SS, 39, 447
Mainzer A., et al., 2014, ApJ, 792, 30
Minniti D., et al., 2010, New Astronomy, 15, 433
Molnar T. A., Sanders J. L., Smith L. C., Belokurov V., Lucas P., Minniti D.,
2022, MNRAS, 509, 2566

Neumann J. V., 1941, The Annals of Mathematical Statistics, 12, 367
Park W., et al., 2021, The Astrophysical Journal, 920, 132
Pawlak M., et al., 2019, MNRAS, 487, 5932
Pedregosa F., et al., 2011, Journal of machine learning research, 12, 2825
Plavchan P., Jura M., Kirkpatrick J. D., Cutri R. M., Gallagher S. C., 2008,
ApJS, 175, 191

Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instruments,
and Systems, 1, 014003

Saito R. K., et al., 2012, A&A, 537, A107
Scargle J. D., 1982, ApJ, 263, 835
Schechter P. L., Mateo M., Saha A., 1993, PASP, 105, 1342
Smith L. C., et al., 2018, MNRAS, 474, 1826
Sokolovsky K. V., et al., 2017, MNRAS, 464, 274

Stellingwerf R. F., 1978, ApJ, 224, 953
Stetson P. B., 1996, PASP, 108, 851
Templeton M. R., Mattei J. A., Willson L. A., 2005, AJ, 130, 776
Udalski A., Szymański M. K., Szymański G., 2015, Acta Astron., 65, 1
Wright E. L., et al., 2010, AJ, 140, 1868
Zechmeister M., Kürster M., 2009, A&A, 496, 577
Zhang R., Zou Q., 2018, in Journal of Physics Conference Series. p. 012012,
doi:10.1088/1742-6596/1061/1/012012

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–10 (2022)

https://github.com/nialljmiller/NN_FAP
www.nialljmiller.com/projects/FAP/FAP.html
http://dx.doi.org/10.1111/j.1365-2966.2008.12689.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.1279B
http://dx.doi.org/10.1111/j.1365-2966.2009.14634.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.395.1541B
http://dx.doi.org/10.1088/1538-3873/aaecbe
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B
http://dx.doi.org/10.1093/mnras/stab888
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504..654B
http://dx.doi.org/10.1093/mnras/stab1545
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4345B
http://dx.doi.org/10.48550/arXiv.2002.05709
https://ui.adsabs.harvard.edu/abs/2020arXiv200205709C
https://ui.adsabs.harvard.edu/abs/2020arXiv200205709C
http://dx.doi.org/10.3847/1538-4365/ab9cae
https://ui.adsabs.harvard.edu/abs/2020ApJS..249...18C
http://dx.doi.org/10.48550/arXiv.1406.1078
https://ui.adsabs.harvard.edu/abs/2014arXiv1406.1078C
https://keras.io
http://dx.doi.org/10.1086/176050
https://ui.adsabs.harvard.edu/abs/1995ApJ...449..231C
http://dx.doi.org/10.1088/0004-637X/696/1/870
https://ui.adsabs.harvard.edu/abs/2009ApJ...696..870D
http://dx.doi.org/10.1037/e471672008-001
http://dx.doi.org/10.1051/0004-6361/202039657
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...1G
http://dx.doi.org/10.1093/mnras/stt1264
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.3423G
http://dx.doi.org/10.1086/301175
https://ui.adsabs.harvard.edu/abs/2000AJ....119..261H
http://dx.doi.org/10.1109/TSP.2012.2204260
http://dx.doi.org/10.1109/TSP.2012.2204260
https://ui.adsabs.harvard.edu/abs/2012ITSP...60.5135H
http://dx.doi.org/10.1111/j.1365-2966.2008.14158.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.392.1456I
http://dx.doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K
http://dx.doi.org/10.3847/0004-6256/151/3/68
https://ui.adsabs.harvard.edu/abs/2016AJ....151...68K
http://dx.doi.org/10.1002/asna.200911204
https://ui.adsabs.harvard.edu/abs/2009AN....330..482K
http://dx.doi.org/10.1007/BF00648343
https://ui.adsabs.harvard.edu/abs/1976Ap&SS..39..447L
http://dx.doi.org/10.1088/0004-637X/792/1/30
https://ui.adsabs.harvard.edu/abs/2014ApJ...792...30M
http://dx.doi.org/https://doi.org/10.1016/j.newast.2009.12.002
http://dx.doi.org/10.1093/mnras/stab3116
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.2566M
http://dx.doi.org/10.3847/1538-4357/ac1745
http://dx.doi.org/10.1093/mnras/stz1681
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.5932P
http://dx.doi.org/10.1086/523644
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..191P
http://dx.doi.org/10.1117/1.JATIS.1.1.014003
http://dx.doi.org/10.1117/1.JATIS.1.1.014003
https://ui.adsabs.harvard.edu/abs/2015JATIS...1a4003R
http://dx.doi.org/10.1051/0004-6361/201118407
https://ui.adsabs.harvard.edu/abs/2012A&A...537A.107S
http://dx.doi.org/10.1086/160554
https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S
http://dx.doi.org/10.1086/133316
https://ui.adsabs.harvard.edu/abs/1993PASP..105.1342S
http://dx.doi.org/10.1093/mnras/stx2789
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.1826S
http://dx.doi.org/10.1093/mnras/stw2262
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464..274S
http://dx.doi.org/10.1086/156444
https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S
http://dx.doi.org/10.1086/133808
https://ui.adsabs.harvard.edu/abs/1996PASP..108..851S
http://dx.doi.org/10.1086/431740
https://ui.adsabs.harvard.edu/abs/2005AJ....130..776T
http://dx.doi.org/10.48550/arXiv.1504.05966
https://ui.adsabs.harvard.edu/abs/2015AcA....65....1U
http://dx.doi.org/10.1088/0004-6256/140/6/1868
https://ui.adsabs.harvard.edu/abs/2010AJ....140.1868W
http://dx.doi.org/10.1051/0004-6361:200811296
https://ui.adsabs.harvard.edu/abs/2009A&A...496..577Z
http://dx.doi.org/10.1088/1742-6596/1061/1/012012

	Introduction
	Method
	Data preparation

	Data
	Real training data
	Synthetic training data: Periodic light curves
	Synthetic training data: Aperiodic light curves
	Test Data

	Experimental results from RNN
	Performance Measurements
	FAP vs N
	FAP vs Amplitude

	Testing with other surveys
	FAP Periodogram
	Conclusions

