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Chapter 1

Abstract

We present the PeRiodic Infrared Milky-way VVV Star-catalogue - ‘PRIMVS’. We utilise the

VVV survey’s unique depth and breadth to investigate the variability of astronomical sources

within the Galactic bulge and disk. There is a focus on an unbiased and complete identification

and classification of periodic variable stars. Employing internal metrics from the VIRAC table

for initial selection, we meticulously clean and preprocess light curves to increase reliability and

completeness. Care has been taken to address photometric contamination and other sources of

uncertainty.

Our approach includes constructing periodograms using Lomb-Scargle, Phase Dispersion Min-

imisation, Conditional Entropy, and Gaussian Processes to ascertain periodicity.

This above process allowed us to curate a catalogue of 86,507,172 candidate variable sources.

Machine learning techniques, particularly decision trees and autoencoders, facilitated the initial

steps in classification of a significant portion of these sources.
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Chapter 2

Introduction

The PeRiodic Infrared Milky-way VVV Star-catalogue - ‘PRIMVS’ aims to provide a thorough

and reliable catalogue of all periodic variable stars present within the VVV survey. The iden-

tification of these variables is achieved by the use of parameters present in the VIRAC (Smith

et al., 2018) database followed by a variability based selection after light curve cleaning. The

compute power of the University of Hertfordshire cluster was heavily utilised for both paralleli-

sation (with a high core count of 128) and the use of GPUS. Care was taken to ensure a minimal

amount of quasi-periodic, and otherwise difficult to detect, periodic variables were missed. A

Quasi-periodic source is a source whose periodicity is irregular. This irregular behaviour can

be caused by an aperiodic change in: period, amplitude, average magnitude or some combina-

tion of these. Many statistical measures separate from the identification of a period were made

(section 6). These statistics serve to provide a full picture of the certainty and reliability of an

extracted period and to produce astronomical information, allowing further identification of the

source
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Chapter 3

Candidate Selection

Due to the uniqueness of the VVV survey, all sources selected for analysis were done so exclu-

sively using internal metrics. An initial selection is made using the variability metrics found in

the VIRAC table. These selections are highlighted in table 3.1

Ksdetections > 50 Ensure we have at least 50 measurements
Ksdetections > 0.6Ksobservations Ensure the source is detected at least 60% of the time
σKs > 0.01 Ensure some variability
σKs/Ks ivw err mag > 4 Ensure variability is above some measure of noise

TABLE 3.1: Variability selections performed on VIRAC metadata, prior to light curve cleaning.
Where ‘σKs’ is the standard deviation and ‘Ks ivw err mag’ is the inverse variance weighted

error

These are relatively loose selections aimed at completeness. Due to the high amount of un-

reliable measurements (as much as 60% in crowded regions) in VIRAC light curves we can’t

fully rely on variability metrics calculated from the raw light curve. After the initial VIRAC

variability selection, the light curve is retrieved and cleaned (see section 4). A second check for

variability is then made, selections for which are shown in table 3.2.

Ks detections > 50 Reaffirm we have at least 50 measurements after cleaning
Kserror < 0.5 Ensure we have sensible uncertainty
KsQ99 −KsQ01 > 0.1 Ensure there is a minimum of 0.1 mag variability
KsQ75 −KsQ25 > 2median(Kserror) Ensure inter-quartile variability is above twice the uncertainty

TABLE 3.2: Variability selections performed after cleaning the light curve

After this selection the light curve is processed as described in section 5. Figure 3.1 outlines the

process for selecting variables in the VVV data. After selection we are left with 86,507,172

candidate variable sources.
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FIGURE 3.1: Flowchart showing the selection process for astronomical sources based on their
variability.



Chapter 4

Light Curve Preprocessing

From a practical standpoint, most period-finding methods are relatively simplistic (irrespective

of their mathematical complexity). Hence, a large portion of the robustness we achieve in our

analysis comes from thoroughly pre-processing a light curve such that a period-finding method

will have its effectiveness maximised. This process involves first cleaning the light curve so

every measurement is as reliable as possible, and then modifying the light curve, allowing for

a more accurate analysis. Due to the depth and survey area of the VVV survey, photometric

contamination is a common occurrence.

VIRAC provides multiple metrics of reliability for each measurement in a light curve. Figure 4.1

shows the ‘ast res chiq’ vs ‘chi’ of a light curve with the dashed line signifying the selection

cuts used. Where ‘chi’ is the DoPhot Chi parameter, representing the quality of the profile fit

and ‘ast res chisq’ represents the quality of the 5 parameter astrometric fit to position, proper

motion and parallax. It can be seen that the majority of the measurements cluster below the

cuts. These cuts were determined with the intention of removing photometry most commonly

affected by photometric contamination. This does not serve to remove bad photometry caused

by saturation however. It is likely these will also have higher ‘chi’ values but we do not need

to remove them as they will still contribute to any apparent periodicity. If a star is sufficiently

saturated such that the photometric error is problematic, both ‘chi’ and ‘ast res chisq’ should

reflect this and flag the point for removal. There exists a trade off between completeness of the

light curves and reliability. Through iterations of the PRIMVS pipeline it has been observed

that points with high ‘chi’ help make the catalogue more complete for bright pulsating stars near

the saturation limit. This will enable us to extract a likely period even if amplitudes may be

under-estimated. A blanket rejection of points with a magnitude error 0.2 is also applied.

We can also utilise the observing pattern of VVV to both increase the reliability of our data

and the photometric certainty. The aforementioned ‘paw-print pairs’ can be used to check if

two points taken close together in time are similar. We do this by ensuring that any pair of data

5



PRIMVS 6

FIGURE 4.1: Showing the range of values taken for a light curve with varying quality of
points. Where ‘ast res chi’ and ‘chi’ are astrometric values taken from the DoPHOT. Colour is

proportional to magnitude.

points have similar magnitude errors and are within 2 × merr of each other. If either are not, both

are rejected. After this, any data point within 1 hour of each other with merr > 0.1 are combined

by binning ‘N’ measurements such that σnew = 1√
N ∑

N
i=1 σi. Any light curve with fewer than 40

measurements after this process is removed from future processing.

After removing erroneous data and combining close points, we move to modifying the remaining

data with the goal of making the periodic signal the only photometric variable. A straight line is

fitted and subtracted to the light curve, as can be seen in figure 4.3. The linear model is fitted to

ensure there are no linear trends throughout the light curve.

AGB stars can feature strong periodic variability on top of a long term variability (Höfner and

Olofsson, 2018). While both of these sources of variability provide useful astrophysical infor-

mation, we are focused on robust period extraction.

Our period-finding methods assume only one source of variability. This can cause an other-

wise correctly phase folded light curve to look messy or even incorrect. For most methods, a

sufficiently strong linear trend would render all periodic signal extraction virtually impossible.

To subtract the straight-line we first bin the light curve into 10 bins. The weighted median is

calculated for each bin and the straight line is fitted to the resulting 10 points. This is done to
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FIGURE 4.2: Showing the points which are removed from a light curve after cleaning. The
blue ‘Astrometry’ points are those that fell outside of the cuts seen in figure 4.1. The red
‘Ambiguous’ points are determined by a boolean flag which signifies if the source appears

blended with a neighbour. The green points are deemed reliable and used for analysis.

best capture an overall trend separate to periodic variability whilst also accounting for erroneous

outliers. The straight-line is only subtracted if dm/dt > 2×10−4 mag/day and R2 > 0.2, where

R2 is the coefficient of determination (R2 = 1 − RSS
T SS , where ‘RSS’ is the sum of squares of

residuals and ‘TSS’ is the total sum of squares)

The aperiodic form of variability may not be a linear trend and we could fit a higher-order

polynomial. However, fitting a higher-order polynomial runs the risk of potentially removing or

modifying the periodic source variability, particularly those of longer periods.
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FIGURE 4.3: Showing the measurements before the removal of the linear trend in red crosses
along with the fitted black line. The measurements after the removal can be seen as blue plusses

‘+’.



Chapter 5

Time-series Analysis

After the light curve has been cleaned and prepared for analysis, we can construct a periodogram.

We compute periodicity using the Lomb-Scargle (LS), Phase Dispersion Minimisation (PDM),

Conditional Entropy (CE) and Gaussian Processes (GP) methods. In an effort to increase the

flexibility of light curve analysis, much of the completed testing identifies strengths and weak-

nesses of each of these methods.

Lomb-Scargle For our implementation of the Lomb-Scargle periodogram, we have used

AstroPy (Astropy Collaboration et al., 2013). Within the AstroPy Time Series package

there is a pre-built Lomb-Scargle algorithm (Astropy Collaboration et al., 2013)1. We also set

‘FIT MEAN = True’ which enables the Lomb-Scargles generalisation (Zechmeister and Kürster,

2009) for help with smaller data-sets and uneven light curves. It takes an average of ≈ 0.4seconds

to compute a 100000 sample periodogram of a source with 200 data points on 1 core and 1 GB

of RAM.

Phase Dispersion Minimisation Our version of the PDM periodogram is taken from the orig-

inal PDM2 source code written in C with edits for efficient interfacing with the python pipeline2.

We use the updated PDM2 method which has the addition of ‘subharmonic sampling’3. This

uses the PDM window transform to more smoothly bin the phase folded light curve. This allows

for clearer differentiation between harmonics of the true period. The python pipeline calls the

PDM binary file and passes light curve and periodogram input information via a temporary file.

Temporary files are a notable hindrance to the speed of this method as hard disk input/output

(IO) operations are orders of magnitude slower than volatile memory operations.

1https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html
2https://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34
3https://www.stellingwerf.com/rfs-bin/index.cgi?action=GetDoc&id=21&filenum=1
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The unreliability of Python’s memory management renders temporary files the only appropriate

method of sending and receiving data between an external executable. A future version of the

PRIMVS pipeline will seek to fix this obvious bottleneck in compute speed. It takes an average

of ≈ 0.2seconds to compute a 100000 sample periodogram of a source with 200 data points on

1 core and 1 GB of RAM.

Conditional Entropy The CE method is a phase folding technique that uses a very similar

method to PDM (Graham et al., 2013). Much like PDM, CE phase folds the light curve for each

trial period, then bins the data, and then measures some quantity of the ‘scatter’ in each of the

bins.

This method is fundamentally different from PDM in the way it calculates the ‘scatter’ of the

data points however. Conditional entropy measures the conditional entropy of the phase folded

light curve and uses this to quantify the ‘scatter’ of the data points.

Equation 5.1 describes the conditional entropy H(m|φ) of a light curve with magnitude ‘m’ and

phase ‘φ ’.

H(m|φ) = ∑
i, j

p(mi,φ j)ln
(

p(φ j)

p(mi,φ j)

)
(5.1)

Where p(mi,φ j) is the probability that a data point will occupy the ith magnitude bin of ‘mi’ and

jth phase bin of ‘φ j’. ‘p(φ j)’ is the probability a data point will occupy the jth bin, which in our

case reduces to:

p(φ j) = ∑
i

p(mi,φ j) (5.2)

Configuring the amount of bins used for the phase axis is crucial in the Conditional Entropy

(CE) method, as it directly affects the sensitivity and accuracy of detecting periodic signals.

The jackknifing method from Hogg (2008) is used to determine the number of magnitude bins

to use for each light curve. However, it would be computationally expensive to calculate the

optimal bins for the phase axis in each trial period. We opted for 10 phase bins based on recom-

mendations from Graham et al. (2013), striking a balance between resolution and noise. Fewer

bins may result in a loss of resolution, making it challenging to detect subtle variations in light

curves. This will be particularly problematic for sources with complex variability patterns like

pulsating stars or eclipsing binaries. Conversely, using too many bins can lead to overfitting,

where the conditional entropy becomes dominated by noise rather than genuine signal features.

This will result in a noisy representation of the phase distribution. Future work may explore
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FIGURE 5.1: Left: A plot showing conditional entropy as a function of frequency. Right:
Showing the phase folded light curve that produces the lease total conditional entropy. In this

plot we can see each of the bins used as well as the conditional entropy each of them hold.

adaptive binning techniques that adjust the number of bins based on the light curve’s charac-

teristics, potentially improving sensitivity across different variable star types and increasing the

robustness of period detection.

Figure 5.1 shows the periodogram (left) and the phase folded light curve when plotted at the

optimal period (right). This figure highlights how this method works as well as the importance

of the bins.

We can see from figure 5.1 that if we were to reduce the number of bins, the resolution of the

process would effectively decrease as it would be harder to differentiate between small changes

in the shape of the light curve. However, if we increase the number of bins too much, the

conditional entropy would be dominated by small changes. This results in a noisy representation

of the phase distribution.

For our implementation of CE, we have used the python package ‘cuvarbase’. The CE peri-

odograms were not constructed as part of the main three tests. The computational intensity of

CE renders it a GPU bound operation. The University of Hertfordshire High Performance Clus-

ter features 6 GPU nodes, each with at least the computational equivalent of 3 Tesla A100 16GB

GPUs. It typically takes ≈ 1 second to recover a period, as opposed to the ≈ 20 minutes for the

same process when CPU bound. However, there are only 32 normal cores with 32 GB of RAM

for each of these GPU nodes. This is significantly less than the 256 cores and 128 GB of RAM

that is used for the combined LS and PDM test. At the time of writing, the CE periodogram

is only computed for sources with multiple distinct periods with a low FAP in an attempt to

clarify ambiguities. A future version of PRIMVS will be made where significantly more/all of

the sources are analysed with CE.
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Gaussian Processes A periodic signal observed in astrophysics is rarely a perfect sinusoid.

Often periodic signals in this field vary in non-sinusoidal and Quasi-Periodic (QP) ways. To

effectively model this behaviour we would ideally have a small number of parameters that are

flexible enough to properly describe real astrophysical signals. In Rasmussen and Williams

(2006) Gaussian Processes are described as providing a “...principled, practical, probabilistic

approach to learning in kernel machines.” Gaussian Processes are unique in our comparison

of period finding techniques, as their ability to identify a periodic signal is only a product of

the kernel used. Through different kernels and different combinations of kernels, Gaussian

Processes can model many patterns within data. The flexibility present in Gaussian Processes

is from their modelling of the covariant structure of the data, rather than the absolute values of

data. This means that a relatively simple kernel is likely to be able to describe the structure of

many light curves.

There are many kernels, and combinations thereof, available to use for Gaussian Processes. In

Rasmussen and Williams (2006) the Quasi-Periodic kernel is used to measure the concentration

of CO2 on the summit of the Mauna Loa volcano in Hawaii. To achieve this, a product of two

basic kernels are used; the squared exponential kernel and the periodic kernel. In Angus et al.

(2018) GPs are used to identify the often quasi-periodic nature of stellar rotation periods, the

QP kernel is used.

ki, j = Aexp
[
−
(xi − x j)

2

2l2 −Γ
2sin2

(
π(xi − x j)

P

)]
+σ

2
δi, j (5.3)

Where ‘ki, j’ is the covariance between points ‘xi’ and ‘x j’. ‘A’ is the amplitude factor, scaling

the overall covariance. ‘exp
[
− (xi−x j)

2

2l2

]
’ is the radial basis function (RBF) which models the

smooth variation in the data. ‘l’ is the length scale of the RBF kernel, controlling how rapidly

the similarity between two points decreases as their distance increases.

‘exp
[
−Γ2sin2

(
π(xi−x j)

P

)]
’ is the periodic component of the kernel, where ‘P’ is the period, and

‘Γ’ adjusts the relative importance of the periodic versus RBF component.

‘σ2δi, j’ represents the noise term, where ‘σ2’ is the variance of the noise, and ‘δi, j’ is the Kro-

necker delta function, equal to 1 if i = j (i.e., for the diagonal elements representing the variance

at each point) and 0 otherwise. This term tries to account for uncorrelated noise measurements,

the presence of a Kronecker delta asserts that each measurements noise is independent.

The GP kernel is minimised with both ‘scipy minimise’ and ‘emcee’ python packages. The

‘scipy minimise’ package uses least-squared regression which can struggle with the number

of free parameters in the dataset. This is mostly used to provide an initial position for each of the

walkers in the Monte Carlo Markov Chain (MCMC) process whic follows. The MCMC min-

imisation utilised 32 walkers and 500 steps. Statistical analysis is performed on the last 50 steps
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FIGURE 5.2: Showing the path the 32 walkers took in their 500 steps they made within the
MCMC process. It can be seen that after ≈ 350 steps the majority of the walkers fall into what

is approximately the same value for the period with a few which do not.

of the MCMC minimisation process. Figure 5.2 shows the path the walkers took under MCMC

minimisation. It can be seen that a small number of walkers deviate from the majority. Without

removing the values these walkers represent, any averages drawn from the total output are at

risk of being erroneously shifted by these walkers. In the future, it might be possible to model

systems with multiple periods by identifying separate clumps of walkers. For this iteration of

the PRIMVS pipeline, the GP is run if the straight line fit has dm/dt > 2×10−4 mag/day(from

the end of section 4), FAP > 0.2, Amplitude > 0.5 and there are more than 100 measurements.

This is done to save compute and utilise the GPs ability to identify periodicity with additional

trends present. Much like CE, the intention is to analyse most/all of the PRIMVS catalogue with

this method.

5.1 Period Searches

A periodogram will be constructed from a list of test periods. Period finding methods will take

a set of test periods, apply that period to the light curve (either via phase folding or fitting) and

then measure some feature of the light curve (goodness of sine fit, binned scatter...). In order to

maximise completeness in a blind search for periodicity we must ensure our set of trial periods

does not impart a selection bias. It is common practice to search for periodicity linearly in

frequency space (Chen et al., 2020) as doing so in period space will disproportionately compute

for longer period variable stars (e.g. a periodic variable star will look fine when phase folded at

50.1 days given a true period of 50 days. This is not the case for a star with a period of 5 days

which has been phase folded at 5.1 days).
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Test # Period range
Test 1 1 d <P <500 d
Test 2 0.01 d <P <1 d
Test 3 500 d <P <Tlc/2

TABLE 5.1: Table showing each of the three successive period scans used

For most completeness we split our period search into three successive searches of 100,000 trial

periods, the ranges of which are seen in table 5.1. For each of the three tests we remove any

sources with a FAP < 0.1 from future tests to save on compute.

Where ‘ Tlc
2 ’ is the length of the light curve divided by two, ensuring a minimum of 2 cycles are

seen. Figure 5.3 shows the pipeline for the period analysis.

5.2 Periodogram

Another important area for ensuring the thorough analysis of a time-series data set is the treat-

ment of the constructed periodogram. For each periodogram, we first exclude known problem-

atic areas, such as those from the lunar, diurnal and yearly cycles. Then the three most significant

peaks are identified. This is not always the 3 highest distinct points on the periodogram. To iden-

tify a peak we must also find a trough on either side. This stops us from extracting a particularly

wide peak twice or extracting a peak which is instead just the edge of the periodogram. It also

allows us to characterise the peak width and height.

After each periodogram has its 3 most prominent peaks extracted, their corresponding periods

are measured and compared to each other. The FAP which we used allows for the universal

comparison of periodicity regardless of the method used to identify the periodicity. This allows

us to mitigate a lot of the biases that are exclusive to either method. For example; LS struggles

more than PDM with the identification of periodicity for eclipsing binaries (VanderPlas, 2018)

and so in cases where LS will fail, PDM should succeed and be recognised by the lower FAP.

This method also allows us to account for some of the effects that sampling, aliasing and other

perturbers may have in hiding the true period amongst other high peaks. If the true period is

within the top 3 most significant peaks then it should be identified by the neural network FAP,

which operates independently of the periodogram.

5.3 Period Alias Check

A common issue with the analysis of periodicity is knowing which alias of the period is correct;

that is, if we extract two similarly likely periods at P and 0.5 × P or 2 × P, which one is correct?
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FIGURE 5.3: Flowchart showing the pipeline for processing the light curves through each of
the three tests seen in table 5.1. Sources identified with a FAP<0.1 are removed from future

tests. Each test consists of 100,000 trial periods.
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It is typical to construct a periodogram with a resolution either linear or logarithmic in frequency

space (i.e not linear in period space). This is done to sample the frequency space as completely

as possible while still being computationally feasible. If we have a source with a period towards

the end of our linearly sampled periodogram, it could be possible that we fail to sample at the

specific period of the source. However, it could be more likely we sample at half of that period

(as the sampling density in period space will increase towards shorter periods). This could

erroneously heighten the peak at this period above that of the true period.

While this problem typically hinges on the ability to confidently determine which phase folded

period is actually correct (which is often impossible), we can at least ensure a fair test is per-

formed for each trial period. This is achieved by recomputing the periodogram with an increased

density of trial periods at previously identified significant peaks. This ensures that we do not

miss the true period due to insufficient sampling density. After we have obtained the aforemen-

tioned list of unique candidate periods we can recompute the periodogram before calculating a

FAP.

At the time of writing, this method computed for all sources with FAP < 0.1 and P > 1000days

(1,028,397 sources). This method is computationally expensive and so was only used on what

is expected to be the most secondarily affected sources. The intent is to use this approach of

recomputing periodograms for all objects. For the first iteration of PRIMVS, we exclude pe-

riod ranges that are close to known diurnal and lunar aliases, such as 1 day, 2 days, 29 days,

and 60 days. This exclusion applies to these specific period ranges, not to the variables them-

selves, which might otherwise exhibit periodic behaviour. By avoiding these alias-prone ranges,

we aim to reduce the likelihood of misidentifying false periods as genuine. These cuts were

selected based on the high susceptibility to observational artefacts within these ranges, which

can produce misleading peaks in periodograms. While this approach helps minimise erroneous

detections, it also potentially overlooks true periodicities that coincide with these alias ranges.

To address this limitation, future iterations will explore the integration of machine learning tech-

niques, similar to those employed by Christy et al. (2023), to better distinguish between genuine

and false periods.

The typical readout time for the VIRCAM detectors is around 1 second, with additional over-

head for data processing and telescope jitter movements. This results in a timing precision for

individual measurements of a few seconds. Given this timing precision, the theoretical minimum

period that can be resolved is a few seconds. However, in practice, periods shorter than a few

minutes may be challenging to detect reliably due to noise, stochastic sampling, and additional

overheads. No uncertainty for time is given in the VIRAC data.



Chapter 6

Further statistics and False Alarm
Probability

After the periodograms have been constructed and analysed the FAP is calculated. Other statis-

tics, particularly relating to the magnitude distribution, are also calculated.

The following is a description of each of the (groups of) features in the PRIMVS catalogue.

The PRIMVS catalogue has two distinct sets of features: light curve features and periodogram

features.

mag n, time range, mag avg and magerr avg Number of points, time range, median mag-

nitude, and median magnitude error in the cleaned light curve (i.e. the light curve that was used

for analysis which is different from the raw light curve)

The mean, standard deviation, skew and kurtosis of the light curve is also calculated. The error

weighted counterpart for each of those values is also used.

The following representations of magnitude and error will be used for all further feature defini-

tions; m, m̄, σm as magnitude, mean magnitude and magnitude standard deviation respectively.

Magnitude error is denoted as merr with the same variations used for magnitude (m̄err, σmerr).

true period The most likely period ‘true period’ is the potential period which had the lowest

FAP

best fap The lowest FAP from each of the extracted potential periods. i.e. the FAP which is

obtained from the ‘true period’

17
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Cody M Measure of asymmetry ‘M’ from Cody et al. (2014).

M =
m̄p −median(m)

σ
(6.1)

where

m̄p =
1

Np
∑

mi∈P
mi (6.2)

and

P = {mi |mi > Q90(m) or mi < Q10(m)} (6.3)

where ‘Q90(m)’ and ‘Q10(m)’ are the 90th and 10th percentiles of the magnitude distribution.

‘Np’ is the number of points in the set ‘P’, and ‘σ ’ is the overall root mean square of the

magnitude distribution.

Stetson K Robust measure of kurtosis ‘Stetson K’ (Stetson, 1996)

Stetson K =
1/N ∑

i=1
N |δi|√

1/N ∑
i=1
N δ 2

i

(6.4)

where the relative error ‘δ ’ is defined as

δ =

√
N

N −1
m− m̄
merr

(6.5)

Where the number of points in the light curve is N.

von Neumann η and ηe The von Neumann variability indices ‘η’ (Neumann, 1941) and

‘ηe’ (Kim et al., 2014) was developed as a check for whether successive data points are inde-

pendent.

η =
∑

N−1
i=1 (xn+1 − xn)

2/(N −1)
σ2

m
(6.6)

However, this assumes we have evenly spaced samples and so we also have

ηe = w̄(tN−1 − t1)2 ∑
N−1
i=1 wi(mi+1 −mi)

2

σ2
m ∑

N−1
i=1 wi

(6.7)

where

wi =
1

(ti+1 − ti)2 (6.8)
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which takes into account the stochastic sampling of our data.

medianBRP The ‘median buffer range percentage’ (Richards et al., 2011) is the percentage

of points within the one tenth of the maximum amplitude.

medianBRP =
|S|
N

(6.9)

where ‘|S|’ is the number of points within ‘A/10’ of the median magnitude ‘m̄’. ‘A/10’ is the

amplitude divided by 10.

S = {x ∈ m|m̄−A/10 < x < m̄+A/10} (6.10)

range cum sum The range of a cumulative sum (Ellaway, 1978). The Rcs should tend to 0

for symmetric distributions.

Rcs = maxS−minS (6.11)

where

s =
1

Nσm

N

∑
i=1

(mi − m̄) (6.12)

max slope The maximum gradient between two points in the cleaned light curve.

Max slope = max
1≤i<N

|mi+1 −mi

ti+1 − ti
| (6.13)

MAD The median absolute deviation ‘MAD’ of the magnitude distribution.

MAD = median(|m−median(m)|) (6.14)

mean var The mean variance ‘mean var’ can be used as a simple indication of variability.

mean var =
σ

m̄
(6.15)

percent amp The percentage amplitude ‘percent amp’ is the largest percentage difference

from the median value.

percent amp =
max(mi −median(mag))

median(mag)
(6.16)



PRIMVS 20

roms The Robust Median Statistic ‘roms’ is a metric of variability.

roms =
∑

N
i=1 |mi −median(m)|/merr,i

N −1
(6.17)

ptop var The peak-to-peak variability ‘ptop var’ is effectively the weighted percentage am-

plitude.

ptop var =
max(m−merr)−min(m−merr)

max(m−merr)+min(m−merr)
(6.18)

lag auto The lag-1 autocorrelation ‘lag auto’ is the dependence of the signal with itself

shifted by one. It can be used to represent how similar consecutive points are.

lag auto =
∑

N
i=2(mi − m̄)(mi−1 − m̄)

∑
N
i=1(mi − m̄)2

(6.19)

AD The Anderson-Darling ‘AD’ test is a statistical test for the similarity of a sample with a

distribution (Anderson and Darling, 1952). Here, it is used to test for normality where AD →
0.25 for a normal distribution.

std nxs The normalised excess variance ‘std nxs’ Vaughan et al. (2003) is variability metric

commonly used in Active Galactic Nuclei variability (Gliozzi et al., 2002; Vagnetti et al., 2016;

Gonzalez et al., 2023).

std nxs =
∑

N
i=1(mi − m̄)2 −m2

err

Nm̄2 (6.20)

trans flag The transient flag ‘trans f lag’ is a boolean flag that is used to try to capture po-

tential transients that are misidentified as periodic variable stars. The phase fold of a transient

variable, such as a microlensing event, can look clean enough to be identified as periodic by both

PDM and the neural network FAP. Figure 6.1 shows the raw and erroneously phase folded light

curve for ‘OGLE BLG-ECL-292071’, which is misclassified as an eclipsing binary in Soszyński

et al. (2016).

The transient flag is calculated at the time that the straight line is fitted to the cleaned light curve,

figure 4.3. Each of the bins that is used for the straight line fit has the inter-quartile range (IQR)

calculated. The median IQR for each of the bins is compared to each individual IQR for each

bin. The transient flag is set to 1 if any bin has an IQR one third larger than the median IQR.
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FIGURE 6.1: Top: Raw light cure showing the point of the transient event clearly at ≈
57250mjd. The green dashed line represents the period (i.e. t0 +Period). Bottom: The in-

correct phase fold at 248.39 days

trans f lag =

1 if IQRi > 1.33×median(IQR)

0 otherwise
(6.21)

ls bal fap The Baluev FAP (Baluev, 2008) is a false alarm probability calculated from the

analysis of the Lomb-Scargle periodogram.

Periodogram Statistics Each of the periodograms is analysed thoroughly for reliable peak

extraction (section 5.2) The same analysis is performed for each of the LS, PDM and CE peri-

odograms (the only difference being LS peaks are at a maximum value whereas both PDM and

CE seek to minimise their value).

Each periodogram is analysed and the three most prominent peaks are extracted. From this

process we have the period ‘LS/PDM/CE period 0,1,2’, peak value ‘LS/PDM/CE y 0,1,2’

(height of the peak) and peak width ‘LS/PDM/CE peak width 0,1,2’ for each of these three



PRIMVS 22

peaks. To allow for future comparison against the peak values, each periodogram has multiple

percentiles calculated - LS/CE/PDM 0.001,0.01,1,25,50(median),75,99,99.9,99.99

No such analysable periodogram is constructed for GPs and so we instead save all of the fitted

metrics;

• ‘gp A’ - amplitude factor of the covariance

• ‘gp l’ - length scale of the RBF kernel

• ‘gp g’ - ‘Γ’ the relative importance of the RBF kernel

• ‘gp P’ - Period



Chapter 7

The Catalogue

The PRIMVS catalogue has 86,507,172 computed sources at the time of writing. If we take a

heuristic cut of anything with a FAP less than 0.3 we have 5,161,222 periodic variable stars. The

true number of periodic variables is likely to be different than that.

We can compare this to the VIVACE catalogue (Molnar et al., 2022). The VIVACE catalogue is

a catalogue of periodic variables in VVV which this catalogue aims to supersede. Virtually all

(97%) of the sources found in VIVACE can be found in this catalogue. Those that are not found

in PRIMVS are because of different quality cuts

The University of Hertfordshire High Performance Cluster was used for the computation of each

of the three tests. Each test was computed with 64 parallel instances with 4 cores and 2 GB of

RAM (Totalling 256 cores and 128 GB of parallel computation use).

It is difficult to calculate a compute time for this catalogue as speed improvements and re-runs

of tests create uncertainty. It takes an average of 0.9− 1.1seconds per source to compute the

whole pipeline inclusive of cleaning and post-processing statistics. This means it would take

≈ 16days to process the catalogue with one test (ignoring cases where extra periodograms are

computed).

The Bailey diagram (Bailey et al., 1919)– Logarithmic period versus amplitude–is a fundamental

tool for characterising periodic variable stars. Figure 7.1 shows the Bailey diagram for all stars

with FAP< 0.3 in the PRIMVS catalogue.

The absence of stars at log10(P) ≈ 1.4 is because we currently exclude periods on the diurnal

and lunar time scale (≈ 30days). These will be re-added in the next version of PRIMVS but

at the time of writing too many contaminants rendered this period range largely unusable. If

we compare to the Bailey diagram constructed from Galactic bulge focused VIMOS data (Kains

et al., 2019) we find similarly located densities. We see the same cluster of short period stars

23
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FIGURE 7.1: A plot of log10(Period) verses Amplitude of all stars with an FAP< 0.3. The
histograms for log10(Period) and Amplitude are also displayed on their respective axes. For
clarity with the large sample size, a 2D histogram is used with a contour around the 80th

percentile of the data. The colour axis (show of density) of the 2D histogram is in log scale.

(−1 < log10(P) < −0.5) which are suspected contact binaries. We also see a density of stars

where we expect to see Cepheids (da Silva et al., 2022; Kains et al., 2019; Bono et al., 2000).

We do not see evidence for the typical ‘double-peak’ distribution caused by the Hertzsprung

progression (Hertzsprung, 1926; Christy, 1975; Bono et al., 2000) (we should see a ‘V’ shape

centred at ∼ 10 days). As we have not fully classified this catalogue it is likely that the lack of

this shape is due to non-Cepheids, such as EBs and RR Lyrae, filling that gap.

We measure a completeness limit of 90% for our periodic variable stars to be at a magnitude of

≈ 14.5. Figure 7.2 shows the magnitude distribution for all stars in the PRIMVS catalogue with

a FAP< 0.3.

We describe the VVV survey as “an infrared time-series survey focused on the southern view-

able Galactic disk and bulge” and so it is fitting we check the key parameters of the PRIMVS

catalogue against their position in Galactic coordinates.

The bottom two panels of figure 7.3 show light curve amplitude as a function of Galactic latitude

and longitude. Most objects are found to have an amplitude< 1. Figure 7.4 shows the magnitude

distribution in the same way as figure 7.3. A homogeneous distribution can be seen throughout
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FIGURE 7.2: A histogram of magnitudes of all stars with a FAP< 0.3.

FIGURE 7.3: Light curve amplitude as a function of Galactic coordinates. Top: Histogram
showing the median amplitude in each bin with respect to Galactic coordinates. Bottom Left:
Density scatter plot showing amplitude as a function of Galactic longitude. Bottom Right:

Density scatter plot showing amplitude as a function of Galactic latitude.
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FIGURE 7.4: Light curve magnitude as a function of Galactic coordinates. Top: Histogram
showing the median magnitude in each bin with respect to Galactic coordinates. Bottom Left:
Density scatter plot showing magnitude as a function of Galactic longitude. Bottom Right:

Density scatter plot showing magnitude as a function of Galactic latitude.

except for the Galactic bulge where the photometric depth increases by 0.2 mag. This same

pattern of brighter sources can also be seen in figure 7.4. This is imparted from the array of

detectors used in the VISTA telescope.

The observing pattern of the VVV survey reveals a correlation between position in Galactic

coordinates and the specific detector used for measurement. This is apparent as the observing

pattern for the VVV survey is based in Galactic coordinates. The VISTA telescope employs an

array of 16 Raytheon VIRGO HgCdTe 0.84-2.5 micron detectors (Bornfreund, 2005). As these

detectors utilise relatively early-stage technology, they can exhibit differences in sensitivity,

linearity, and particularly in saturation limits. This variability across the detectors affects the

precision and reliability of measurements, as some detectors reach saturation at lower brightness

levels than others. Such discrepancies can lead to areas of the VVV survey region which are

probed to greater depth and/or brighter magnitude.

We can look for other features as a function of location that help us to begin to verify the

completeness of PRIMVS. Due to the nature of period finding techniques, light curves with

uneven magnitude distributions/non-sinusoidal shapes are often underrepresented in periodic

variable catalogues. Eclipsing binaries are ubiquitous and largely homogeneous throughout the

galaxy (Mowlavi et al., 2023). Due to the nature of an eclipsing binary light curve, they are
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FIGURE 7.5: Light curve of eclipsing binary ‘V* V2679 Sgr’. Top: Light curve as a function
of time. Bottom: phase folded light curve. The colours are correlated with time.

largely unique in their light curve morphology and resulting magnitude distribution. This is

exemplified by figure 7.5 where a typical EB (β − lyrae) light curve can be seen.

For an EB, a large distribution of the points are in the brighter stages of the light curve (either the

lack of an eclipse or a relatively minor reflection) with fewer points tracing out the two eclipses.

This results in a uneven distribution of points, unlike how a Cepheid, RR-Lyra or AGB light

curve would have1. EBs are therefore likely to be the largest contributor to any measured skew

deviating from 0 in the catalogue. Figure 7.6 shows the measured skew in PRIMVS as a function

of Galactic coordinates. The median skew is greater than 0.2 across the whole of the PRIMVS

catalogue but also appears largely homogeneous throughout the Galactic disk and bulge. This

helps to indicate that we have not preferentially selected EBs in either the Galactic disk or bulge,

regions with different densities of stars.

1assuming no other perturbation
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FIGURE 7.6: Light curve skew as a function of Galactic coordinates. Top: Histogram showing
the median skew in each bin with respect to Galactic coordinates. Bottom Left: Density scatter
plot showing skew as a function of Galactic longitude. Bottom Right: Density scatter plot

showing skew as a function of Galactic latitude.

7.1 Quasi-periodic sources

The variability of a source can be from a multitude of non-mutually exclusive intrinsic and ex-

trinsic reasons. It follows that there are many variable sources which feature some apparent

quasi-periodicity. This quasi-periodicity could be from the combination of a periodic variabil-

ity with some other aperiodic variability (as is commonly seen in YSOs) or single causes of

quasi-periodicity (such as star spots). The treatment of quasi-periodicity was considered in the

construction of this catalogue by the combination of feature that are outlined in section 6. The

neural network FAP acts as something analogous to a measurement of structure in the phase

folded light curve (similar to PDM). There exists cases where quasi-periodic sources feature

strong structure within their phase fold. This will lead to the neural network based FAP to er-

roneously proscribe a FAP indicative of periodicity. However, other features that are calculated

for the light curve will indicate a deviation from periodicity. Most notably is the neural network

FAP and the Baluev FAP will likely disagree as Baluev FAP has a dependency on the similarity

to a sinusoidal wave. It is likely that quasi-periodic sources live in a latent space described by

each of these features that is exclusively different from the periodic sources. A future work for
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this project will be to identify this latent space region and assign a flag of quasi-periodicity to

any sources that are within it.
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FIGURE 7.7: Showing architecture of the autoencoder that was used. For easy visualisation,
each node here represents 16 actual nodes in the network.

7.2 PRIMVS Embedding

To continue with the overarching goal of unbiased exploration of the VVV data set we can make

latent space representations of the PRIMVS catalogue to highlight potential groups. Figure 7.7

shows the architecture of the autoencoder (which takes the form of an MLP) that was used for

this process.

The network was trained for 469 epochs with early stopping on the plateau of validation loss.

The initial learn rate of 0.1 was halved each time the validation loss did not reduce for more

than 10 steps. Only features with discernible physical meaning were used (i.e. features that

an astronomer would use to begin to classify a star). Table 7.1 shows each of the features that

were used. Features with a ‘*’ are taken from the VIRAC catalogue. A future improvement for

any methods using this selection of features would be to identify important and useless features.

There is a lot of shared information between many of the features as a large portion of them are

describing the magnitude distribution of the light curve.

Figure 7.8 shows the Uniform Manifold Approximation and Projection (UMAP; McInnes et al.,
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*z med mag-ks med mag Median z band magnitude - median ks mag
*y med mag-ks med mag Median y band magnitude - median ks mag
*j med mag-ks med mag Median j band magnitude - median ks mag
*h med mag-ks med mag Median h band magnitude - median ks mag
*l galactic longitude
*b galactic latitude
Cody M AM Cody ‘M’ value
stet k Stetson ‘K’ value
eta e Von Neumann ‘eta e’ vallue
med BRP Median buffer range percentage
range cum sum Range of a cumulative sum
max slope Maximum slope between two points
MAD Median Absolute Deviation
mean var Mean Variance
percent amp Percentage Amplitude
true amplitude Amplitude
roms RObust Median Statistic
p to p var Peak-to-peak variability
lag auto Lag-1 autocorrelation
AD Anderson-Darling
std nxs Normalized excess variance
weight mean Weighted Mean
weight std Weighted Standard deviation
weight skew Weighted Skew
weight kurt Weighted Kurtosis
mean Mean
std Standard deviation
skew Skew
kurt Kurtosis
true period Period

TABLE 7.1: Table showing each of the features used in the embedding process. Features with
a ‘*’ are taken from the VIRAC catalogue.

2018) of these features. UMAP is a machine learning technique used for dimensionality reduc-

tion. It is particularly effective at preserving both the local and global structure of the data, mak-

ing it useful for visualisation of high-dimensional datasets, similar to t-SNE (van der Maaten

and Hinton, 2008). UMAP works by constructing a high-dimensional graph representing the

data, then optimising a low-dimensional graph to be as structurally similar as possible, hence

reducing dimensions while retaining the data’s original structure.

Figure 7.9 shows the Principle Component Analysis (PCA) projection of these features. PCA is

a statistical technique used for dimensionality reduction while preserving as much of the vari-

ance in the high-dimensional data as possible. It works by identifying the directions (principal

components) along which the variance in the data is maximised. The data is Z-normalised and

the covariance matrix is across each feature is calculated. Eigenvectors of the covariance ma-

trix are computed and sorted with respect to the magnitude of their eigenvalues, this forms the
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FIGURE 7.8: A 3 dimensional UMAP representation of the features from table 7.1

principle components. The original data is projected onto the principal components selected in

the previous step, resulting in a new dataset with reduced dimensions. Figures 7.8 & 7.9 show

20,000 points with the colour representing density.

Both of these projections show similar features, most notably the smaller isolated group that can

be seen in both. Comparing both projections shows that the same set of stars are found in both

the PCA and UMAP isolated groups. These groups comprise ≈ 2% of the total distribution in

both projections. Comparing these groups to the rest of the distribution we find features which

can parameterise it: amplitude> 1, Lag-1 autocorrelation< 0.2, 0.2 <FAP< 0.3 and, period>

1000 days. Figure 7.10 shows the raw and phase folded light curves of 16 sources selected from

this isolated group. These objects appear to be high amplitude, quasi-periodic variable stars.

This is expected as the above parameterisation appropriately descibes such objects. It is also

expected that the objects found in such an isolated group would not be as cleanly periodic.
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FIGURE 7.9: A 3 dimensional PCA representation of 31 features from table 7.1. The impor-
tance of the dimensions is; 32.58%, 14.40%, 13.68%

A Quasi-periodic (or Aperiodic) object would possess features more distinctly different than

individual classes of periodic variable stars.

Interactive plots and data visualisations that are not suitable for the pdf format can be found at:

https://nialljmiller.com/projects/PRIMVS/PRIMVS.html.

https://nialljmiller.com/projects/PRIMVS/PRIMVS.html
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(A) mjd vs mag plot

(B) Phase vs mag plot (colour as mjd)

FIGURE 7.10: Light curves of 16 objects identified from the isolated group seen in fig-
ures 7.8 & 7.9
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7.3 Decision Trees

The use of a pre-classified star catalogue as a training set for a machine learning algorithm is

not new. The General Catalogue of Variable Stars (GCVS, (Samus’ et al., 2017)) exemplifies

such a catalogue, having compiled variable objects since 1946. This approach has been ap-

plied to data from VVV (Molnar et al., 2022), ASAS-SN (Jayasinghe et al., 2018, 2019), Gaia

DR2 (Rimoldini et al., 2019) and DR3 (Rimoldini et al., 2023), EROS-II light curves (Kim et al.,

2014), and in the identification of microlensing events (Husseiniova et al., 2021).

It follows that we can use this approach to classify the variable stars in the PRIMVS catalogue.

This method is not without caveats however, most notably the biases inherited from the training

set.

The cross match of PRIMVS with the Gaia DR3 all-sky classification catalogue (Rimoldini et al.,

2023) yielded 118,172 sources with an FAP < 0.3 and a ‘best class score’ > 0.7. This selection

forms the training set which was then used with a gradient boosted decision tree classifier ‘XG-

Boost’ (Chen and Guestrin, 2016). Figure 7.11 shows the distribution of classes found in the

cross-matched data. This distribution is not even across all classes and reflects the selection bias

of both the Gaia DR3 all-sky classification catalogue and the VVV PRIMVS catalogue. This is

a notable caveat, especially as the differences in the data (e.g. optical vs near-IR) likely leads to

different selection biases.

Figure 7.12 shows the confusion matrix achieved from using the Gaia DR3 all-sky classification

catalogue to form our training set for classifying PRIMVS. It can be seen that the majority of

classes are correctly identified with a high completeness. All of the White Dwarf and RCB

variables are misclassified as EBs and LPVs respectively. RCB variables are hydrogen-poor,

carbon/helium-rich, high-luminosity stars. Their variability is characterised by high amplitude

(1-9mag) aperiodic changes on the order of hundreds of days. This is superimposed by periodic

pulsations up to several tenths of a magnitude on the time scale of tens of days (Clayton, 1996).

The light curves of RCBs are therefore complex and likely span a large range in any feature

space. Considering this with their scarcity, it is not surprising we misclassify all of them as

LPVs, a much more common class with similar features. Given this, RCBs and White Dwarfs

were removed from the data.

We can calculate how confident the model is with the highest probable class. Figure 7.13 shows

the ‘Entropy’ versus the ‘Confidence metric’ for each class with a probability> 0.5 for its most

likely class. where ‘Entropy’ is the entropy across the classes, (i.e. S = ∑Pclass ln(Pclass)).

Therefore, a lower Entropy suggests that the model’s predictions are more certain because the

probability distribution across classes is less uniform – One class has a much higher probability

compared to others, indicating a strong preference by the model for that class. The ‘Confidence

metric’ is the difference between the most likely and next most likely class.
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FIGURE 7.11: Training set of cross-matched VVV-Gaia data. Where; ‘ECL’ is eclipsing bina-
ries, ‘RR’ is RR Lyraes, ‘ELL’ is Ellipsoidals, ‘S’ is short time-scale objects, ‘RS’ is RS Canum
Venaticorum variables, ‘CEP’, is Cepheids, ‘SOLAR LIKE’ is for Solar-like objects, ‘YSO’ is
young stellar objects, ‘DSCT∥GDOR∥SXPHE’ is for delta-scuti like objects, and ‘LPV’ is for

long period variables.

A Bailey diagram is an excellent tool for versifying how sensible our classifications are. Fig-

ure 7.14 shows the Bailey diagram constructed from the highest probability sources for each

class. For both figure 7.14 and figure 7.15 we select only sources with a probability> 0.7, en-

tropy< 0.2 and confidence metric> 0.9. The same colours and markers are also used to repre-

sent each class throughout figures 7.13,7.14, and 7.15 The Cepheid population is clearly visible

and takes the expected form on the plot. The expected bimodal distribution of Cepheids can be

seen as a loose ‘V’ shape at 10 days (Bono et al., 2000). We also see good agreement with Kains

et al. (2019) in terms of our LPV, Delta Scuti and RR Lyrae placements.

Figure 7.15 shows the stellar classifications across the VVV survey region in relation to their

positions within the Milky Way. This plot provides insights into the typical locations of different

stellar populations. Cepheids, marked as red dots, are young, luminous stars commonly found

in the thin disk throughout the galaxy Skowron et al. (2019). Figure 7.15 shows our sample of

Cepheids throughout the disk mostly within |l|< 1.5, with an increased density at |b|< 6. Long-

period Variables, such as Miras and semi-regulars are typically older, evolved stars and thus are

more prevalent in the Galactic bulge and halo, where older stellar populations dominate (Wood

and Bessell, 1983). Figure 7.15 shows these objects homogeneously spaced throughout the disk

with significantly higher densities towards the inner bulge. RR Lyrae stars, yellow plus signs,

are old, metal-poor stars found mainly in the Galactic bulge and halo, highlighting regions with
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FIGURE 7.12: Confusion matrix of grouped classes from the Gaia Data Release 3 All-sky
classification (Rimoldini et al., 2023). ‘RCB’ is R Coronae Borealis variables and YSO is

Young Stellar Objects.

ancient star populations ,(Cabrera Garcia et al., 2023; Ramos et al., 2018). This seems to be in

agreement with figure 7.15.

Similar to the autoencoder, interactive plots and data visualisations that are not suitable for the

pdf format can be found at: https://nialljmiller.com/projects/PRIMVS/PRIMVS.html.

https://nialljmiller.com/projects/PRIMVS/PRIMVS.html
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FIGURE 7.13: Top: A scatter plot of ‘Entropy’ versus the ‘Confidence metric’ for each each
class with a probability> 0.5. Bottom: A 2D histogram of ‘Entropy’ versus the ‘Confidence

metric’ for the same data
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FIGURE 7.14: A plot of log10(Period) verses Amplitude for the most confident predictions
(top 10%) of each class from our decision tree which was trained using the Gaia DR3 all-sky

classification catalogue.
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FIGURE 7.15: Spatial distribution of stellar classes across the VVV survey region in the con-
text of the Milky Way. The decision tree based classification uses the Gaia DR3 all-sky classi-
fication catalogue as its training set.The absence of YSOs here is due to the conservative cuts

shown in figure 7.13



Chapter 8

Conclusions

This work introduces the PeRiodic Infrared Milky-way VVV Star-catalogue (PRIMVS), lever-

aging the VVV survey’s depth and breadth to investigate the variability of astronomical sources

within the Milky Way’s Galactic bulge and disk. Through meticulous data cleaning and pre-

processing, alongside modern analysis techniques, PRIMVS highlights the efforts towards an

unbiased and complete identification and classification of periodic variable stars.

Our analysis employed various period-finding methods, demonstrating their strengths and weak-

nesses, and utilised a novel FAP method to enhance reliability in period identification. The

catalogue includes over 86 million candidate variable sources and ≈ 5million periodic variable

stars.

Machine learning techniques, notably decision trees, have been shown as viable in classifying

a substantial portion of PRIMVS sources. Cross-matched data from Gaia DR3 and the Simbad

database has proven effective at identifying known and expected classes of stars. This approach,

however, introduces its own set of challenges, notably the potential biases from the training sets

and the limitation posed by Gaia’s optical depth compared to the near-IR capabilities of VVV.

PRIMVS not only advances our understanding of variable stars within the Milky Way but also

showcases the potential of combining traditional astronomical analysis with modern data science

techniques to explore and categorise astronomical sources effectively. Future work will aim to

refine these classifications, expand the catalogue’s scope, and further integrate deep learning

approaches for a more thorough understanding of the stellar demographics and population of

the Milky Way.
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